首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a systematic density functional investigation on the prediction of the 13C, 15N, 17O, and 19F NMR properties of 23 molecules with 21 density functionals. Extensive comparisons are made for both 13C magnetic shieldings and chemical shifts with respect to the gas phase experimental data and the best CCSD(T) results. We find that the OPBE and OPW91 exchange-correlation functionals perform significantly better than some popular functionals such as B3LYP and PBE1PBE, even surpassing, in many cases, the standard wavefunction-based method MP2. Further analysis has been performed to explore the individual role played by various exchange and correlation functionals. We find that the B88 and PBE exchange functionals have a too strong tendency of deshielding, leading to too deshielded magnetic shielding constants; whereas the OPTX exchange functional performs remarkably well. We claim that the main source of error arises from the exchange functional, but correlation functional also makes important contribution. We find that the correlation functionals may be grouped into two classes. class A, such as LYP and B98, leads to deshielded NMR values, deteriorating the overall performance; whereas class B, such as PW91 and PBE, generally increases the absolute shieldings, which complements the exchange functionals, leading to improved results in the calculation of NMR data.  相似文献   

2.
We have investigated the geometries as well as the longitudinal dipole moment (micro), polarizability (alpha), and first hyperpolarizability (beta) of polymethineimine oligomers using different approaches [Hartree-Fock (HF), second-order M?ller-Plesset (MP2), and hybrid density functional theory (DFT) methods (B3LYP and PBE0)] for evaluating the geometries and the nonlinear optical properties. It turns out that (i) HF and the selected DFT methods provide the incorrect sign for beta of short and medium size oligomers. (ii) The B3LYP and PBE0 electron correlation correction are too small for micro, too large for alpha, and for some oligomer lengths, they are in the wrong direction for beta. (iii) On the contrary to polyacetylene, the hybrid-DFT geometries are in poor agreement with MP2 geometries; the former showing much smaller bond length alternations.  相似文献   

3.
选取了杂化泛函B3LYP, B3PW91, O3LYP, PBE0, 以及与之相对应的GGA泛函BLYP, BPW91, OLYP和PBE, 还选取了能更好地兼顾强相互作用和弱相互作用的X3LYP泛函和在预测NMR的化学位移有较好表现的OPBE泛函, 以及两种meta-GGA泛函VSXC和TPSS, 共12种泛函, 详细地考察了这些泛函在预测EA方面的准确性.  相似文献   

4.
We perform a systematic investigation of how the B3LYP/6-311+G(2d,p) calculated 13C nuclear magnetic shielding constants depend on the 6-31G(d)-optimized geometries for a set of 18 molecules with various chemical environments. For absolute shieldings, the Hartree-Fock (HF)-optimized geometries lead to a mean absolute deviation (MAD) of 5.65 ppm, while the BLYP- and B3LYP-optimized geometries give MADs of 13.07 and 10.14 ppm, respectively. For chemical shifts, the HF, BLYP and B3LYP geometries lead to MADs of 2.36, 5.80, and 4.43 ppm, respectively. We find that the deshielding tendency of B3LYP can be effectively compensated by using the HF-optimized geometries. When we apply the B3LYP//HF protocol to versicolorin A and 5alpha-androstan-3,17-dione, MADs of 1.86 and 1.41 ppm, respectively, are obtained for chemical shifts, in satisfactory agreement with the experiment.  相似文献   

5.
6.
The performance of the M06-L density functional has been tested for four databases of NMR isotropic chemical shielding constants. Comparison with the B3LYP, BLYP, HCTH, KT1, KT2, LSDA, OPBE, OLYP, PBE, TPSS, and VSXC functionals shows that M06-L has improved performance for calculating NMR chemical shielding constants, especially for highly correlated systems. We also found that VSXC and M06-L have encouraging accuracy for calculating (13)C chemical shielding constants, and both functionals perform very well for the chemical shielding constants in the o-benzyne molecule.  相似文献   

7.
8.
In the iron(II) low-spin complex [Fe(bpy)3]2+, the zero-point energy difference between the 5T2g(t4(2g)e2g) high-spin and the 1A(1g)(t(6)2g) low-spin states, Delta(E)0HL, is estimated to lie in the range of 2500-5000 cm(-1). This estimate is based on the low-temperature dynamics of the high-spin-->low-spin relaxation following the light-induced population of the high-spin state and on the assumption that the bond-length difference between the two states Delta(r)HL is equal to the average value of approximately 0.2 A, as found experimentally for the spin-crossover system. Calculations based on density functional theory (DFT) validate the structural assumption insofar as the low-spin-state optimised geometries are found to be in very good agreement with the experimental X-ray structure of the complex and the predicted high-spin geometries are all very close to one another for a whole series of common GGA (PB86, PW91, PBE, RPBE) and hybrid (B3LYP, B3LYP*, PBE1PBE) functionals. This confirmation of the structural assumption underlying the estimation of Delta(E)0HL from experimental relaxation rate constants permits us to use this value to assess the ability of the density functionals for the calculation of the energy difference between the HS and LS states. Since the different functionals give values from -1000 to 12000 cm(-1), the comparison of the calculated values with the experimental estimate thus provides a stringent criterion for the performance of a given functional. Based on this comparison the RPBE and B3LYP* functionals give the best agreement with experiment.  相似文献   

9.
Six popular density functionals in conjunction with the conductor-like screening (COSMO) solvation model have been used to obtain linear M?ssbauer isomer shift (IS) and quadrupole splitting (QS) parameters for a test set of 20 complexes (with 24 sites) comprised of nonheme nitrosyls (Fe-NO) and non-nitrosyl (Fe-S) complexes. For the first time in an IS analysis, the Fe electron density was calculated both directly at the nucleus, ρ(0)(N), which is the typical procedure, and on a small sphere surrounding the nucleus, ρ(0)(S), which is the new standard algorithm implemented in the ADF software package. We find that both methods yield (near) identical slopes from each linear regression analysis but are shifted with respect to ρ(0) along the x-axis. Therefore, the calculation of the Fe electron density with either method gives calibration fits with equal predictive value. Calibration parameters obtained from the complete test set for OLYP, OPBE, PW91, and BP86 yield correlation coefficients (r(2)) of approximately 0.90, indicating that the calibration fit is of good quality. However, fits obtained from B3LYP and B3LYP* with both Slater-type and Gaussian-type orbitals are generally found to be of poorer quality. For several of the complexes examined in this study, we find that B3LYP and B3LYP* give geometries that possess significantly larger deviations from the experimental structures than OLYP, OPBE, PW91 or BP86. This phenomenon is particularly true for the di- and tetranuclear Fe complexes examined in this study. Previous M?ssbauer calibration fit studies using these functionals have usually included mononuclear Fe complexes alone, where these discrepancies are less pronounced. An examination of spin expectation values reveals B3LYP and B3LYP* approach the weak-coupling limit more closely than the GGA exchange-correlation functionals. The high degree of variability in our calculated S(2) values for the Fe-NO complexes highlights their challenging electronic structure. Significant improvements to the isomer shift calibrations are obtained for B3LYP and B3LYP* when geometries obtained with the OLYP functional are used. In addition, greatly improved performance of these functionals is found if the complete test set is grouped separately into Fe-NO and Fe-S complexes. Calibration fits including only Fe-NO complexes are found to be excellent, while those containing the non-nitrosyl Fe-S complexes alone are found to demonstrate less accurate correlations. Similar trends are also found with OLYP, OPBE, PW91, and BP86. Correlations between experimental and calculated QSs were also investigated. Generally, universal and separate Fe-NO and Fe-S fit parameters obtained to determine QSs are found to be of good to excellent quality for every density functional examined, especially if [Fe(4)(NO)(4)(μ(3)-S)(4)](-) is removed from the test set.  相似文献   

10.
The performance of the Hartree-Fock method and the three density functionals B3LYP, PBE0, and CAM-B3LYP is compared to results based on the coupled cluster singles and doubles model in predictions of the solvatochromic effects on the vertical n-->pi* and pi-->pi* electronic excitation energies of acrolein. All electronic structure methods employed the same solvent model, which is based on the combined quantum mechanics/molecular mechanics approach together with a dynamical averaging scheme. In addition to the predicted solvatochromic effects, we have also performed spectroscopic UV measurements of acrolein in vapor phase and aqueous solution. The gas-to-aqueous solution shift of the n-->pi* excitation energy is well reproduced by using all density functional methods considered. However, the B3LYP and PBE0 functionals completely fail to describe the pi-->pi* electronic transition in solution, whereas the recent CAM-B3LYP functional performs well also in this case. The pi-->pi* excitation energy of acrolein in water solution is found to be very dependent on intermolecular induction and nonelectrostatic interactions. The computed excitation energies of acrolein in vacuum and solution compare well to experimental data.  相似文献   

11.
Converged approximate density functional calculations usually do not bind anions due to large self-interaction error. But Hartree-Fock (HF) calculations have no such problem, producing negative HOMO energies. Thus, electron affinities can be calculated from density functional total energy differences using approximations such as PBE and B3LYP, evaluated on HF densities (for both anion and neutral). This recently proposed scheme is shown to work very well for molecules, better than the common practice of restricting the basis set except for cases such as CN, where the HF density is too inaccurate due to spin contamination.  相似文献   

12.
13.
This article investigates the performance of five commonly used density functionals, B3LYP, BP86, PBE0, PBE, and BLYP, for studying diatomic molecules consisting of a first row transition metal bonded to H, F, Cl, Br, N, C, O, or S. Results have been compared with experiment wherever possible. Open-shell configurations are found more often in the order PBE0>B3LYP>PBE approximately BP86>BLYP. However, on average, 58 of 63 spins are correctly predicted by any functional, with only small differences. BP86 and PBE are slightly better for obtaining geometries, with errors of only 0.020 A. Hybrid functionals tend to overestimate bond lengths by a few picometers and underestimate bond strengths by favoring open shells. Nonhybrid functionals usually overestimate bond energies. All functionals exhibit similar errors in bond energies, between 42 and 53 kJmol. Late transition metals are found to be better modeled by hybrid functionals, whereas nonhybrid functionals tend to have less of a preference. There are systematic errors in predicting certain properties that could be remedied. BLYP performs the best for ionization potentials studied here, PBE0 the worst. In other cases, errors are similar. Finally, there is a clear tendency for hybrid functionals to give larger dipole moments than nonhybrid functionals. These observations may be helpful in choosing and improving existing functionals for tasks involving transition metals, and for designing new, improved functionals.  相似文献   

14.
The present contribution assesses the performance of several popular and accurate density functionals, namely B3LYP, BP86, M06, MN12L, mPWPW91, PBE0, and TPSSh toward manganese‐based coordination complexes. These compounds show promising properties toward application to catalytic water oxidation. Although manganese with N‐ and O‐biding ligands tends to give rise to high spin complexes, the results show that BP86, mPWPW91, and specially MN12L, tend to yield low‐spin complexes. The usage of these functionals for such compounds is, thus, discouraged. All the functionals considered deliver accurate geometries. The present results show, however, that B3LYP delivers geometries deviating from experimental values when compared to the other functionals of the set. M06, PBE0, and TPSSh deliver geometries of similar accuracy, PBE0 outstanding slightly with respect to the other two. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
The purpose of this work is to test several density functional models (namely, OPBE, O3LYP, OPW91, BPW91, OB98, BPBE, B971, OLYP, PBE1PBE, and B3LYP) to determine their accuracy and speed for computing (13)C(alpha) chemical shifts in proteins. The test is applied to 10 NMR-derived conformations of the 76-residue alpha/beta protein ubiquitin (protein data bank id 1D3Z). With each functional, the (13)C(alpha) shielding was computed for 760 amino acid residues by using a combination of approaches that includes, but is not limited to, treating each amino acid X in the sequence as a terminally blocked tripeptide with the sequence Ac-GXG-NMe in the conformation of the regularized experimental protein structure. As computation of the (13)C(alpha) chemical shifts, not their shielding, is the main goal of this work, a computation of the (13)C(alpha) shielding of the reference, namely, tetramethylsilane, is investigated here and an effective and a computed tetramethylsilane shielding value for each of the functionals is provided. Despite observed small differences among all functionals tested, the results indicate that four of them, namely, OPBE, OPW91, OB98, and OLYP, provide the most accurate functionals with which to reproduce observed (13)C(alpha) chemical shifts of proteins in solution, and are among the faster ones. This study also provides evidence for the applicability of these functionals to proteins of any size or class, and for the validation of our previous results and conclusions, obtained from calculations with the slower B3LYP functional.  相似文献   

16.
DFT calculations on the spin-crossover complex Fe(salen)(NO) provide a striking illustration of the comparative performance of different exchange-correlation functionals vis-à-vis the issue of transition metal spin state energetics. Thus, although the "classic" pure functionals PW91 and BLYP favor the S = 1/2 state by about 10 kcal/mol, relative to the S = 3/2 state, the hybrid functional B3LYP favors the latter state by nearly the same margin. In contrast, the newer pure functionals OLYP and OPBE, based on the OPTX exchange functional, as well as the B3LYP* hybrid functional (which has 15% Hartree-Fock exchange, compared with 20% for B3LYP) predict nearly isoenergetic S = 1/2 and 3/2 states, as required for a spin-crossover complex. Intriguingly, the OLYP and B3LYP* spin density profiles for the S = 1/2 state of Fe(salen)(NO) are substantially dissimilar.  相似文献   

17.
18.
Time-dependent density functional theory (TDDFT) computations are performed for 42 organic molecules and three transition metal complexes, with experimental molar optical rotations ranging from 2 to 2 × 10(4) deg cm(2) dmol(-1). The performances of the global hybrid functionals B3LYP, PBE0, and BHLYP, and of the range-separated functionals CAM-B3LYP and LC-PBE0 (the latter being fully long-range corrected), are investigated. The performance of different basis sets is studied. When compared to liquid-phase experimental data, the range-separated functionals do, on average, not perform better than B3LYP and PBE0. Median relative deviations between calculations and experiment range from 25 to 29%. A basis set recently proposed for optical rotation calculations (LPol-ds) on average does not give improved results compared to aug-cc-pVDZ in TDDFT calculations with B3LYP. Individual cases are discussed in some detail, among them norbornenone for which the LC-PBE0 functional produced an optical rotation that is close to available data from coupled-cluster calculations, but significantly smaller in magnitude than the liquid-phase experimental value. Range-separated functionals and BHLYP perform well for helicenes and helicene derivatives. Metal complexes pose a challenge to first-principles calculations of optical rotation.  相似文献   

19.
The prediction of magnetic behavior is important for the design of new magnetic materials. Kohn–Sham density functional theory is popular for this purpose, although one should be careful about choosing the right exchange–correlation functional. Here, we perform a statistical analysis to test different range‐separated hybrid density functionals for the calculation of magnetic exchange coupling constants J of fourteen organic diradicals. Our analysis suggests that in absolute terms the MN12SX functional performs best among the series of twelve functionals studied here (including the popular B3LYP), followed by N12SX functionals along with Scuseria's HSE series of functionals. LC‐ PBE was found to be the least accurate, which is in contrast with its good performance for calculating J for transition metal complexes. The HSE family of functionals and B3LYP are the only functionals to reproduce the qualitative trends of the coupling constants correctly for the ferromagnetically coupled diradicals under study. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
Using the long-range corrected (LC) density functional theory (DFT) scheme introduced by Iikura et al. [J. Chem. Phys. 115, 3540 (2001)] and the Coulomb-attenuating model (CAM-B3LYP) of Yanai et al. [Chem. Phys. Lett. 393, 51 (2004)], we have calculated the longitudinal dipole moments and static electronic first hyperpolarizabilities of increasingly long polymehtineimine oligomers. For comparison purposes Hartree-Fock (HF), Moller-Plesset perturbation theory (MP2), and conventional pure and hybrid functionals have been considered as well. HF, generalized gradient approximation (GGA), and conventional hybrids provide too large dipole moments for long oligomers, while LC-DFT allows to reduce the discrepancy with respect to MP2 by a factor of 3. For the first hyperpolarizability, the incorrect evolution with the chain length predicted by HF is strongly worsened by BLYP, Perdew-Burke-Ernzerhof (PBE), and also by B3LYP and PBE0. On the reverse, LC-BLYP and LC-PBE hyperpolarizabilities are correctly predicted to be positive (but for the two smallest chains). Indeed, for medium and long oligomers LC hyperpolarizabilities are slightly smaller than MP2 hyperpolarizabilities, as it should be. CAM-B3LYP also strongly improves the B3LYP results, though a bit less impressively for small chain lengths. The present study demonstrates the efficiency of long-range DFT, even in very pathological cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号