首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We synthesized an AB2‐type monomer, 4‐{4‐[di(4‐aminophenyl)methyl]phenoxy}phthalic acid, which contained one phthalic acid group and two aminophenyl functionalities. The direct self‐polycondensation of the AB2‐type monomer in the presence of triphenylphosphite as an activator afforded a hyperbranched poly(ether imide) with a large number of terminal amino groups. This polymer was characterized with 1H NMR and IR spectroscopy. The degree of branching of the hyperbranched poly(ether imide) was approximately 56%, as determined by a combination of model compound studies and an analysis of 1H NMR spectroscopy integration data. The terminal amino groups underwent functionalization readily. The solubility and thermal properties of the resulting polymers depended on the nature of the chain end groups. In addition, the hyperbranched poly(ether imide) was grafted with polyhedral oligomeric silsesquioxane (POSS). Transmission electron microscopy analysis revealed that the grafted POSS molecules aggregated to form a nanocomposite material. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3726–3735, 2003  相似文献   

2.
Three vinyl ethers (VEs: isobutyl vinyl ether, ethyl vinyl ether, and isopropyl vinyl ether) and an active styrene derivative, p‐methoxystyrene (pMOS), were employed for cationic polymerization using a benign initiating system, AgClO4/Ph2CHBr/dialkyl sulfide. Choosing a sulfide with suitable nucleophilicity was important for achieving controlled polymerization. Additionally, selecting an appropriate reaction temperature based on monomer reactivity was also crucial for suppressing side reactions. Highly controlled polymerizations of VEs and pMOS were further confirmed by proton nuclear magnetic resonance (1H NMR) and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS). In addition, the coordination of the arylmethyl cation to the added base obviously influenced the initiation, as demonstrated by 1H NMR analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 861–870  相似文献   

3.
Phosphorus‐containing vinyl ether monomers and 1‐propenyl ether monomers were prepared by the regioselective addition reaction of glycidyl vinyl ether (GVE) or 1‐propenyl glycidyl ether with diaryl phosphonates with quaternary onium salts as catalysts. The reaction of GVE with bis(4‐chlorophenyl) phenylphosphonate gave bis[1‐(4‐chlorophenoxy methyl)‐2‐(vinyloxy)ethyl]phenylphosphonate in a 68% yield. The structures of the resulting phosphorus‐containing vinyl ether monomers and 1‐propenyl ether monomers were confirmed by IR and 1H NMR spectra and elemental analysis. Photoinitiated cationic polymerizations of the resulting phosphorus‐containing vinyl ether monomers and 1‐propenyl ether monomers were investigated with photoacid generators. The polymerization of vinyl ether groups and 1‐propenyl ether groups of the obtained monomers proceeded very smoothly with a sulfonium‐type cationic photoinitiator, bis[4‐(diphenylsulfonio)phenyl]sulfide‐bis(hexafluorophosphate), upon UV irradiation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3105–3115, 2005  相似文献   

4.
The cerium‐containing MCM‐41 (Ce‐MCM‐41) has been synthesized by direct hydrothermal method. The low‐angle XRD patterns revealed the typical five major peaks of MCM‐41 type hexagonal structures. The interplanar spacing d100 = 38.4 Å was obtained that can be indexed on a hexagonal unit cell parameter with ao = 44.3 Å which was larger than that of pure siliceous MCM‐41 (Si‐MCM‐41). Transmission electron micrograph shows the regular hexagonal array of uniform channel characteristics of MCM‐41. The BET surface area of Ce‐MCM‐41 was 840 m2/g, which is much reduced as compared to that of Si‐MCM‐41, with the pore size of 26.9 Å and mesopore volume of 0.78 cm3/g were measured by nitrogen adsorption‐desorption isotherm at 77 K. Along with the results, the synthesized Ce‐MCM‐41 exhibited a well‐ordered MCM‐41‐type mesoporous structure with the incorporation of cerium. Using Ce‐MCM‐41 as a support, the Rh (0.5 wt%) catalyst exhibited very high activity for the NO/CO reactions.  相似文献   

5.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

6.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

7.
A vinyl ether bearing a carbonate side group (2‐oxo‐1,3‐dioxolan‐4‐yl‐methyl vinyl ether, GCVE) was synthesized and copolymerized with various commercially available fluoroolefins [chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), and perfluoromethyl vinyl ether (PMVE)] by radical copolymerization initiated by tert‐butyl peroxypivalate. Although HFP, PMVE, and vinyl ether do not homopolymerize under radical conditions, they copolymerized easily yielding alternating poly(GCVE‐alt‐F‐alkene) copolymers. These alternating structures were confirmed by elemental analysis as well as 1H, 19F, and 13C NMR spectroscopy. All copolymers were obtained in good yield (73–85%), with molecular weights ranging from 3900 to 4600 g mol?1 and polydispersities below 2.0. Their thermogravimetric analyses under air showed decomposition temperatures at 10% weight loss (Td,10%) in the 284–330°C range. The HFP‐based copolymer exhibited a better thermal stability than those based on CTFE and PMVE. The glass transition temperatures were in the 15–65°C range. These original copolymers may find potential interest as polymer electrolytes in lithium ions batteries. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
A series novel composites based on poly(L‐lactide) (PLLA) oligomer modified mesoporous silica (MCM41) homogeneous dispersed into poly(L‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG) terpolymer has been successfully prepared. The structure of PLTG terpolymer was characterized by 1H NMR. The structure and properties of modified and unmodified MCM41 were attested by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyzer (TGA), X‐ray diffraction (XRD), N2 adsorption–desorption, scanning electron microscope (SEM), and transmission electron microscope (TEM), which demonstrated that the MCM41 was successfully grafted by the PLLA oligomer. The effect of different concentration of modified MCM41 in PLTG matrix on thermal properties, mechanical properties, and hydrophilicity was investigated by TGA, differential scanning calorimetry (DSC), mechanical testing, contact angle measurement, and SEM. The results of mechanical tests showed that 5 wt% of modified MCM41 nanoparticles gave rise to optimal reinforcing effect. The tensile strength, Young's modulus, and elongation at break of the PLTG/PLLA‐MCM41 (5%) composites were 33.2 Mpa, 1.58 Gpa, and 268.7%, respectively, which were all higher than the PLTG/MCM41 (5%) composites and pristine PLTG matrix, which were due to good interfacial adhesion between the PLTG matrix and MCM41 nanoparticles. TGA and DSC have shown that 5% modified MCM41 in the PLTG increased the temperature of composite degradation and Tg. Water contact angle measurement showed the hydrophilicity of the composites increases with the increase of modified MCM41 content. The live/dead assay showed that the modified MCM41 existing on the PLTG matrix presents very excellent cytocompatibility. Therefore, the novel composite material represents promising way for bone tissue engineering application.  相似文献   

9.
A novel nanocatalyst was developed based on covalent surface functionalization of MCM‐41 with polyethyleneimine (PEI) using [3‐(2,3‐Epoxypropoxy)propyl] trimethoxysilane (EPO) as a cross‐linker. Amine functional groups on the surface of MCM‐41 were then conjugated with iodododecane to render an amphiphilic property to the catalyst. Palladium (II) was finally immobilized onto the MCM‐41@PEI‐dodecane and the resulted MCM‐41@aPEI‐Pd nanocatalyst was characterized by FT‐IR, TEM, ICP‐AES and XPS. Our designed nanocatalyst with a distinguished core‐shell structure and Pd2+ ions as catalytic centers was explored as an efficient and recyclable catalyst for Heck and oxidative boron Heck coupling reactions. In Heck coupling reaction, the catalytic activity of MCM‐41@aPEI‐Pd in the presence of triethylamine as base led to very high yields and selectivity. Meanwhile, the MCM‐41@aPEI‐Pd as the first semi‐heterogeneous palladium catalyst was examined in the C‐4 regioselective arylation of coumarin via the direct C‐H activation and the moderate to excellent yields were obtained toward different functional groups. Leaching test indicated the high stability of palladium on the surface of MCM‐41@aPEI‐Pd as it could be recycled for several runs without significant loss of its catalytic activity.  相似文献   

10.
New sequence-regulated macromonomers ( 3 ) with a vinyl ether terminal were prepared by the HI/ZnI2-mediated living cationic polymerization of vinyl ethers: CH3? CH(OR1)? CH2CH(OR2)? C(COOEt)2CH2CH2OCH?CH2 ( 3a : R1 = nBu, R2 = CH2CH2OCOPh; 3b : R1 = iOct, R2 = CH2CH2Cl). The synthesis consisted of three consecutive steps: (i) quantitative addition of hydrogen iodide to the first vinyl ether into an adduct [CH3? CH(OR1)? l]; (ii) propagation of a second vinyl ether from the adduct in the presence of zinc iodide; and (iii) quenching the resulting AB-type heterodimeric living intermediate with a carbanion [θC(COOEt)2CH2CH2OCH?CH2] carrying a vinyl ether group. The HI/ZnI2-initiated living cationic polymerization of 3a and 3b yielded narrowly distributed polymers $\left( {\overline {DP}} _{_n } \sim 10 \right)$ consisting of a poly(vinyl ether) backbone and sequence-regulated oligomer branches. The terminal vinyl ether function of 3 was also utilized to prepare pentamers and hexamers with controlled sequence of functional vinyl ethers by selective dimerization and chain extension reactions with HI/ZnI2. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Ligand N2,N6‐bis(2‐hydroxyethyl)pyridine‐2,6‐dicarboxamide (L=BHPC) was synthesized and used to construct lanthanide‐based mesoporous material Eu‐L‐MCM‐41. In the structure of resulting Eu‐L‐MCM‐41, Eu3+ was chelated by BHPC, and the Eu‐L complexes were anchored into the forming MCM‐41 host by the reaction between the hydroxyl group and active Si‐OH. The mesoporous material Eu‐L‐MCM‐41 was characterized by UV, IR, small‐angle X‐ray diffraction (SAXRD) patterns, nitrogen adsorption/desorption isotherms, TGA and fluorescence spectra. The results indicate that ligand and Eu3+ have been introduced into the MCM‐41 host, and Eu‐L‐MCM‐41 exhibits characteristic luminescence of Eu3+.  相似文献   

12.
A new cardo diamine monomer 3, 3‐bis‐[4‐{2′trifluoromethyl 4′‐(4″‐aminophenyl) phenoxy} phenyl]‐2‐phenyl‐2, 3‐dihydro‐isoindole‐1‐one ( 4 ) has been synthesized from potentially cheap phenolphthalein as the starting material. This diamine was used for the synthesis of a new poly(ether amide) and two co‐poly(ether amide)s using 4, 4′‐diaminodiphenyl ether (ODA) as co‐monomer by direct solution polycondensation with 5‐t‐butyl iso‐phthalic acid. These new polymers showed inherent viscosities of 0.48–0.62 dL g?1. The resulting poly(ether amide) and co‐poly(ether amide)s were readily soluble in polar aprotic solvents like NMP, DMF, DMAc, DMSO, and pyridine. The polymers have been fully characterized by 1H and 13C NMR, FTIR spectroscopy, and elemental analysis. These polymers showed glass transition temperatures in the range of 267–310°C. Thermogravimetric analysis indicated high thermal stability of these polymers at 5 and 10% weight loss temperature in air above 357°C and 419°C, respectively. The poly(ether amide) films cast from DMAc were flexible with tensile strength up to 91 MPa, elongations at break up to 11%, and modulus of elasticity up to 1.82 GPa. X‐ray diffraction measurements indicate the amorphous nature of the poly(ether amide)s. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
(E) and (Z)‐1,2‐bis(trifluoromethyl)ethene‐1,2‐dicarbonitrile (BTE; (=E) and (Z)‐1,2‐bis(trifluoromethyl)but‐2‐enedinitrile) were reacted with an excess of methyl vinyl ether, used as solvent, and furnished 1 : 2 adducts 6 (54%) and cyclobutanes 3 as 1 : 1 adducts (41%). The four diastereoisomeric bis‐adducts 6 (different ratios from (E) and (Z)‐BTE) are derivatives of 1‐azabicyclo[4.2.0]oct‐5‐ene; X‐ray analyses and 19F‐NMR spectra revealed their structures. Since the cyclobutanes 3 are resistant to vinyl ether, the pathways leading to mono‐ and bis‐adducts must compete on the level of the intermediate l,4‐zwitterions 1 and 2 . The latter either cyclize to the cyclobutanes 3 or to six‐membered cyclic ketene imines 8 which accept a second molecule of vinyl ether to yield the bis‐adducts 6 . The occurrence of the highly strained ketene imines 8 gains credibility by comparison to stable seven‐membered cyclic ketene imines recently reported.  相似文献   

14.
Poly(vinyl acetate) (PVA) prepared by photopolymerization was studied by a combination of one and two dimensional NMR spectroscopy. The 13C{1H} and 1H NMR spectra of the homopolymer (PVA) were assigned to the configurational pentads (CH region) and tetrads (CH2 region). These assignments were substantiated by the use of two dimensional heteronuclear single quantum correlation (HSQC), heteronuclear single quantum correlation‐total correlation spectroscopy (HSQC‐TOCSY) and double quantum filtered correlation spectroscopy (DQFCOSY) experiments. The results obtained by the analysis of the area under the resonance signals confirmed that PVA obeys Bernoullian statistics. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 551–556, 1999  相似文献   

15.
Six new methyl silicon (IV) precursors of the type [MeSi{ON?C(R)Ar}3] [when R = Me, Ar = 2‐C5H4N ( 1 ), 2‐C4H3O ( 2 ) or 2‐C4H3S ( 3 ); and when R = H, Ar = 2‐C5H4N ( 4 ), 2‐C4H3O ( 5 ) or 2‐C4H3S ( 6 )] were prepared and structurally characterized by various spectroscopic techniques. Molecular weight measurements and FAB (Fast Atomic Bombardment) mass spectral studies indicated their monomeric nature. 1H and 13C{1H} NMR spectral studies suggested the oximate ligands to be monodentate in solution, which was confirmed by 29Si{1H} NMR signals in the region expected for tetra‐coordinated methylsilicon (IV) derivatives. Thermogravimetric analysis of 1 revealed the complex to be thermally labile, decomposing to a hybrid material of definite composition. Two representative compounds ( 2 and 4 ) were studied as single source molecular precursor for low‐temperature transformation to silica‐based hybrid materials using sol–gel technique. Formation of homogenous methyl‐bonded silica materials (MeSiO3/2) at low sintering temperature was observed. The thermogravimetric analysis of the methylsilica material indicated that silicon‐methyl bond is thermally stable up to a temperature of 400 °C. Reaction of 2 and Al(OPri)3 in equimolar ratio in anhydrous toluene yielded a brown‐colored viscous liquid of the composition [MeSi{ON?C(CH3)C4H3O}3.Al(OPri)3]. Spectroscopic techniques 1H, 13C{1H}, 27Al{1H} and 29Si{1H} NMR spectra of the viscous product indicated the presence of tetracoordination around both silicon and aluminum atoms. On hydrolysis it yielded methylated aluminosilicate material with high specific surface area (464 m2/g). Scanning electron micrography confirmed a regular porous structure with porosity in the nanometric range. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The luminescent complex [4‐(3‐hydroxypropyl)‐4′‐methyl‐2,2′‐bipyridine]‐bis(2,2′‐bipyridine)‐ruthenium(II)‐bis(hexafluoroantimonate) and its methacrylate derivative were successfully synthesized and fully characterized by two‐dimensional 1H and 13C{1H} NMR techniques [correlation spectroscopy (COSY) and heteronuclear multiple‐quantum coherence experiment (HMQC)], as well as matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. The respective labeled methyl methacrylate‐ruthenium(polypyridyl) copolymers were obtained by free‐radical copolymerization with methyl methacrylate and were characterized utilizing NMR, IR, and UV–visible spectroscopy and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3954–3964, 2003  相似文献   

17.
The trans‐bis(trimethylsilyl)chalcogenolate palladium complexes, trans‐[Pd(ESiMe3)2(PnBu3)2] [E = S ( 1 ) and Se ( 2 )] were synthesized in good yields and high purity by reacting trans‐[PdCl2(PBu3)2] with LiESiMe3 (E = S, Se), respectively. These complexes were characterized by 1H, 13C{1H}, 31P{1H} (and 77Se{1H}) NMR spectroscopy and single‐crystal X‐ray analysis. The reaction of 2 with propionyl chloride led to the formation of trans‐[Pd(SeC(O)CH2CH3)2(PnBu3)2] ( 3 ), a trans‐bis(selenocarboxylato) palladium complex and thus established a new method for the formation of this type of complex. Complex 3 was characterized by 1H, 13C{1H}, 31P{1H} and 77Se{1H} NMR spectroscopy and a single‐crystal X‐ray structure analysis.  相似文献   

18.
The 1H{15N} NMR spectrum of 5,7‐diphenyl‐1,2,4‐triazolo[1,5‐a]‐pyrimidine ( 3 ) was measured by GHMQC, unambiguously assigned and compared with the spectra of 1,2,4‐triazolo[1,5‐a]pyrimidine ( 1 ) and 5,7‐dimethyl‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 2 ). A series of Au(III) chloride complexes of general formula AuLCl3, where L = 1 , 2 , 3 , was synthesized and studied by 1HH{15N} GHMQC and 1H{13C} GHMBC. Low‐frequency shifts of 72–74 ppm (15N) and 5–6 ppm (13C) were observed upon complexation by Au(III) ions for the coordination site N‐3 and adjacent C‐2, C‐3a atoms, respectively. The 13C signals of C‐5, C‐6, C‐7 and the 1H resonances of H‐2, H‐6 were shifted to higher frequency. Comparison with analogous Pd(II), Pt(II) and Pt(IV) complexes revealed that in the case of Au(III) coordination the 15N shifts were relatively smaller, whereas those for 13C and 1H were larger. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Poly(ethylene methyl phosphate)-poly(ethylene glycol)-poly(ethylene methyl phosphate) triblockcopolymers carrying hydroxyl group at both chain ends were synthesized with sodium poly(ethyleneglycol)ate as initiator. The effects of the factors such as solvent, amount of the initiator and reaction timewere investigated. The copolymers were characterized by IR, ~1H-NMR, ~1H{~(31)P}-NMR, ~(13)C-NMR, ~(31)P{~1H}-NMR, and DSC. High molecular weight of the copolymer and high yield of the polymerization were achievedwithin 3 min at 25℃. The polymerization process was studied by ~(31)P{~1H}-NMR and transesterification wasfound during longer polymerization time.  相似文献   

20.
The coordination chemistry of the potentially tridentate phenoxyethyl‐ and benzylaminoethyl‐iminophenol pro‐ligands {ONO}H and {ONN}H on to calcium, zinc and aluminum centers has been studied. {ONO}Ca(N(SiMe3)2)(THF) (1) was prepared by a one‐pot salt metathesis procedure but the analogous reaction with {ONN}H led to intractable mixtures. Reaction of {ONO}H and {ONN}H with ZnEt2 (0.5 or 1 equiv.) systematically led to isolation of the corresponding homoleptic complexes {ONO}2Zn (2) and {ONN}2Zn (3). The dimethylaluminum complexes {ONO}AlMe2 (4) and {ONN}AlMe2 (5) were readily prepared by treatment of AlMe3 with 1 equiv. of the corresponding pro‐ligands. Compounds 2 and 4 both feature monomeric structures in the solid state, with chelating iminophenolate ligands and free‐hanging phenoxyethyl arms. The amido complex 1 was shown to be a moderately active initiator for the controlled ring‐opening polymerization (ROP) of racemic lactide at room temperature, yielding polylactides with high initiation efficiencies, relatively narrow polydispersities and a slight heterotactic bias. Immortal polymerizations were achieved by combining excess isopropanol to 1, offering up to 50 macromolecules per metal center, with well‐controlled molecular features. The dimethylaluminum compounds 4 and 5 initiated the controlled ROP of lactide in the presence of 1 equiv. of benzyl alcohol as a co‐initiator but required higher temperatures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号