首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the numerical discretization of two‐dimensional depth‐averaged models with porosity. The equations solved by these models are similar to the classic shallow water equations, but include additional terms to account for the effect of small‐scale impervious obstructions which are not resolved by the numerical mesh because their size is smaller or similar to the average mesh size. These small‐scale obstructions diminish the available storage volume on a given region, reduce the effective cross section for the water to flow, and increase the head losses due to additional drag forces and turbulence. In shallow water models with porosity these effects are modelled introducing an effective porosity parameter in the mass and momentum conservation equations, and including an additional drag source term in the momentum equations. This paper presents and compares two different numerical discretizations for the two‐dimensional shallow water equations with porosity, both of them are high‐order schemes. The numerical schemes proposed are well‐balanced, in the sense that they preserve naturally the exact hydrostatic solution without the need of high‐order corrections in the source terms. At the same time they are able to deal accurately with regions of zero porosity, where the water cannot flow. Several numerical test cases are used in order to verify the properties of the discretization schemes proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This paper describes the numerical solution of the 1D shallow‐water equations by a finite volume scheme based on the Roe solver. In the first part, the 1D shallow‐water equations are presented. These equations model the free‐surface flows in a river. This set of equations is widely used for applications: dam‐break waves, reservoir emptying, flooding, etc. The main feature of these equations is the presence of a non‐conservative term in the momentum equation in the case of an actual river. In order to apply schemes well adapted to conservative equations, this term is split in two terms: a conservative one which is kept on the left‐hand side of the equation of momentum and the non‐conservative part is introduced as a source term on the right‐hand side. In the second section, we describe the scheme based on a Roe Solver for the homogeneous problem. Next, the numerical treatment of the source term which is the essential point of the numerical modelisation is described. The source term is split in two components: one is upwinded and the other is treated according to a centred discretization. By using this method for the discretization of the source term, one gets the right behaviour for steady flow. Finally, in the last part, the problem of validation is tackled. Most of the numerical tests have been defined for a working group about dam‐break wave simulation. A real dam‐break wave simulation will be shown. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, we apply Davis's second‐order predictor‐corrector Godunov type method to numerical solution of the Savage–Hutter equations for modeling granular avalanche flows. The method uses monotone upstream‐centered schemes for conservation laws (MUSCL) reconstruction for conservative variables and Harten–Lax–van Leer contact (HLLC) scheme for numerical fluxes. Static resistance conditions and stopping criteria are incorporated into the algorithm. The computation is implemented on graphics processing unit (GPU) by using compute unified device architecture programming model. A practice of allocating memory for two‐dimensional array in GPU is given and computational efficiency of two‐dimensional memory allocation is compared with one‐dimensional memory allocation. The effectiveness of the present simulation model is verified through several typical numerical examples. Numerical tests show that significant speedups of the GPU program over the CPU serial version can be obtained, and Davis's method in conjunction with MUSCL and HLLC schemes is accurate and robust for simulating granular avalanche flows with shock waves. As an application example, a case with a teardrop‐shaped hydraulic jump in Johnson and Gray's granular jet experiment is reproduced by using specific friction coefficients given in the literature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper makes the first attempt of extending implicit AUSM‐family schemes to multiphase flow simulations. Water faucet, air–water shock tube and oscillating manometer problems are used as benchmark tests with the generic four‐equation two‐fluid model. For solving the equations implicitly, Newton's method along with a sparse matrix solver (UMFPACK solver) is employed, and the numerical Jacobian matrix is calculated. Comparison between implicit and explicit AUSM‐family schemes is presented, indicating that similarly accurate results are obtained with both schemes. Furthermore, the water faucet problem is solved using both staggered and collocated grids. This investigation helps integrate high‐resolution schemes into staggered‐grid‐based computational algorithms. The influence of the interface pressure correction on the simulation results is also examined. Results show that the interfacial pressure correction introduces numerical dissipation. However, this dissipation cannot eliminate the overshoots because of the incompatibility of numerical discretization of the conservative and non‐conservative terms in the governing equations. The comparison of CPU time between implicit and explicit schemes is also studied, indicating that the implicit scheme is capable of improving the computational efficiency over its explicit counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is the first endeavour to present the local domain‐free discretization (DFD) method for the solution of compressible Navier–Stokes/Euler equations in conservative form. The discretization strategy of DFD is that for any complex geometry, there is no need to introduce coordinate transformation and the discrete form of governing equations at an interior point may involve some points outside the solution domain. The functional values at the exterior dependent points are updated at each time step to impose the wall boundary condition by the approximate form of solution near the boundary. Some points inside the solution domain are constructed for the approximate form of solution, and the flow variables at constructed points are evaluated by the linear interpolation on triangles. The numerical schemes used in DFD are the finite element Galerkin method for spatial discretization and the dual‐time scheme for temporal discretization. Some numerical results of compressible flows over fixed and moving bodies are presented to validate the local DFD method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents various finite difference schemes and compare their ability to simulate instability waves in a given flow field. The governing equations for two‐dimensional, incompressible flows were solved in vorticity–velocity formulation. Four different space discretization schemes were tested, namely, a second‐order central differences, a fourth‐order central differences, a fourth‐order compact scheme and a sixth‐order compact scheme. A classic fourth‐order Runge–Kutta scheme was used in time. The influence of grid refinement in the streamwise and wall normal directions were evaluated. The results were compared with linear stability theory for the evolution of small‐amplitude Tollmien–Schlichting waves in a plane Poiseuille flow. Both the amplification rate and the wavenumber were considered as verification parameters, showing the degree of dissipation and dispersion introduced by the different numerical schemes. The results confirmed that high‐order schemes are necessary for studying hydrodynamic instability problems by direct numerical simulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a two‐dimensional finite element model for simulating dynamic propagation of weakly dispersive waves. Shallow water equations including extra non‐hydrostatic pressure terms and a depth‐integrated vertical momentum equation are solved with linear distributions assumed in the vertical direction for the non‐hydrostatic pressure and the vertical velocity. The model is developed based on the platform of a finite element model, CCHE2D. A physically bounded upwind scheme for the advection term discretization is developed, and the quasi second‐order differential operators of this scheme result in no oscillation and little numerical diffusion. The depth‐integrated non‐hydrostatic wave model is solved semi‐implicitly: the provisional flow velocity is first implicitly solved using the shallow water equations; the non‐hydrostatic pressure, which is implicitly obtained by ensuring a divergence‐free velocity field, is used to correct the provisional velocity, and finally the depth‐integrated continuity equation is explicitly solved to satisfy global mass conservation. The developed wave model is verified by an analytical solution and validated by laboratory experiments, and the computed results show that the wave model can properly handle linear and nonlinear dispersive waves, wave shoaling, diffraction, refraction and focusing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The scope of this paper is three fold. We first formulate upwind and symmetric schemes for hyperbolic equations with non‐conservative terms. Then we propose upwind numerical schemes for conservative and non‐conservative systems, based on a Riemann solver, the initial conditions of which are evolved non‐linearly in time, prior to a simple linearization that leads to closed‐form solutions. The Riemann solver is easily applied to complicated hyperbolic systems. Finally, as an example, we formulate conservative schemes for the three‐dimensional Euler equations for general compressible materials and give numerical results for a variety of test problems for ideal gases in one and two space dimensions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The present work deals with the numerical investigation of a collapsing bubble in a liquid–gas fluid, which is modeled as a single compressible medium. The medium is characterized by the stiffened gas law using different material parameters for the two phases. For the discretization of the stiffened gas model, the approach of Saurel and Abgrall is employed where the flow equations, here the Euler equations, for the conserved quantities are approximated by a finite volume scheme, and an upwind discretization is used for the non‐conservative transport equations of the pressure law coefficients. The original first‐order discretization is extended to higher order applying second‐order ENO reconstruction to the primitive variables. The derivation of the non‐conservative upwind discretization for the phase indicator, here the gas fraction, is presented for arbitrary unstructured grids. The efficiency of the numerical scheme is significantly improved by employing local grid adaptation. For this purpose, multiscale‐based grid adaptation is used in combination with a multilevel time stepping strategy to avoid small time steps for coarse cells. The resulting numerical scheme is then applied to the numerical investigation of the 2‐D axisymmetric collapse of a gas bubble in a free flow field and near to a rigid wall. The numerical investigation predicts physical features such as bubble collapse, bubble splitting and the formation of a liquid jet that can be observed in experiments with laser‐induced cavitation bubbles. Opposite to the experiments, the computations reveal insight to the state inside the bubble clearly indicating that these features are caused by the acceleration of the gas due to shock wave focusing and reflection as well as wave interaction processes. While incompressible models have been used to provide useful predictions on the change of the bubble shape of a collapsing bubble near a solid boundary, we wish to study the effects of shock wave emissions into the ambient liquid on the bubble collapse, a phenomenon that may not be captured using an incompressible fluid model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This paper is concerned with the development of a high‐order upwind conservative discretization method for the simulation of flows of a Newtonian fluid in two dimensions. The fluid‐flow domain is discretized using a Cartesian grid from which non‐overlapping rectangular control volumes are formed. Line integrals arising from the integration of the diffusion and convection terms over control volumes are evaluated using the middle‐point rule. One‐dimensional integrated radial basis function schemes using the multiquadric basis function are employed to represent the variations of the field variables along the grid lines. The convection term is effectively treated using an upwind scheme with the deferred‐correction strategy. Several highly non‐linear test problems governed by the Burgers and the Navier–Stokes equations are simulated, which show that the proposed technique is stable, accurate and converges well. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A new scheme for differentiating complex mesh‐based numerical models (e.g. finite element models), the Independent Set Perturbation Adjoint method (ISP‐Adjoint), is presented. Differentiation of the matrices and source terms making up the discrete forward model is realized by a graph coloring approach (forming independent sets of variables) combined with a perturbation method to obtain gradients in numerical discretizations. This information is then convolved with the ‘mathematical adjoint’, which uses the transpose matrix of the discrete forward model. The adjoint code is simple to implement even with complex governing equations, discretization methods and non‐linear parameterizations. Importantly, the adjoint code is independent of the implementation of the forward code. This greatly reduces the effort required to implement the adjoint model and maintain it as the forward model continues to be developed; as compared with more traditional approaches such as applying automatic differentiation tools. The approach can be readily extended to reduced‐order models. The method is applied to a one‐dimensional Burgers' equation problem, with a highly non‐linear high‐resolution discretization method, and to a two‐dimensional, non‐linear, reduced‐order model of an idealized ocean gyre. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The development of a numerical scheme for non‐hydrostatic free surface flows is described with the objective of improving the resolution characteristics of existing solution methods. The model uses a high‐order compact finite difference method for spatial discretization on a collocated grid and the standard, explicit, single step, four‐stage, fourth‐order Runge–Kutta method for temporal discretization. The Cartesian coordinate system was used. The model requires the solution of two Poisson equations at each time‐step and tridiagonal matrices for each derivative at each of the four stages in a time‐step. Third‐ and fourth‐order accurate boundaries for the flow variables have been developed including the top non‐hydrostatic pressure boundary. The results demonstrate that numerical dissipation which has been a problem with many similar models that are second‐order accurate is practically eliminated. A high accuracy is obtained for the flow variables including the non‐hydrostatic pressure. The accuracy of the model has been tested in numerical experiments. In all cases where analytical solutions are available, both phase errors and amplitude errors are very small. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
We present a method for the parallel numerical simulation of transient three‐dimensional fluid–structure interaction problems. Here, we consider the interaction of incompressible flow in the fluid domain and linear elastic deformation in the solid domain. The coupled problem is tackled by an approach based on the classical alternating Schwarz method with non‐overlapping subdomains, the subproblems are solved alternatingly and the coupling conditions are realized via the exchange of boundary conditions. The elasticity problem is solved by a standard linear finite element method. A main issue is that the flow solver has to be able to handle time‐dependent domains. To this end, we present a technique to solve the incompressible Navier–Stokes equation in three‐dimensional domains with moving boundaries. This numerical method is a generalization of a finite volume discretization using curvilinear coordinates to time‐dependent coordinate transformations. It corresponds to a discretization of the arbitrary Lagrangian–Eulerian formulation of the Navier–Stokes equations. Here the grid velocity is treated in such a way that the so‐called Geometric Conservation Law is implicitly satisfied. Altogether, our approach results in a scheme which is an extension of the well‐known MAC‐method to a staggered mesh in moving boundary‐fitted coordinates which uses grid‐dependent velocity components as the primary variables. To validate our method, we present some numerical results which show that second‐order convergence in space is obtained on moving grids. Finally, we give the results of a fully coupled fluid–structure interaction problem. It turns out that already a simple explicit coupling with one iteration of the Schwarz method, i.e. one solution of the fluid problem and one solution of the elasticity problem per time step, yields a convergent, simple, yet efficient overall method for fluid–structure interaction problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
An efficient numerical scheme is outlined for solving the SWEs (shallow water equations) in environmental flow; this scheme includes the addition of a five‐point symmetric total variation diminishing (TVD) term to the corrector step of the standard MacCormack scheme. The paper shows that the discretization of the conservative and non‐conservative forms of the SWEs leads to the same finite difference scheme when the source term is discretized in a certain way. The non‐conservative form is used in the solution outlined herein, since this formulation is simpler and more efficient. The time step is determined adaptively, based on the maximum instantaneous Courant number across the domain. The bed friction is included either explicitly or implicitly in the computational algorithm according to the local water depth. The wetting and drying process is simulated in a manner which complements the use of operator‐splitting and two‐stage numerical schemes. The numerical model was then applied to a hypothetical dam‐break scenario, an experimental dam‐break case and an extreme flooding event over the Toce River valley physical model. The predicted results are free of spurious oscillations for both sub‐ and super‐critical flows, and the predictions compare favourably with the experimental measurements. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
This paper describes a new class of three‐dimensional finite difference schemes for high‐speed turbulent flows in complex geometries based on the high‐order monotonicity‐preserving (MP) method. Simulations conducted for various 1D, 2D, and 3D problems indicate that the new high‐order MP schemes can preserve sharp changes in the flow variables without spurious oscillations and are able to capture the turbulence at the smallest computed scales. Our results also indicate that the MP method has less numerical dissipation and faster grid convergence than the weighted essentially non‐oscillatory method. However, both of these methods are computationally more demanding than the COMP method and are only used for the inviscid fluxes. To reduce the computational cost for reacting flows, the scalar equations are solved by the COMP method, which is shown to yield similar results to those obtained by the MP in supersonic turbulent flows with strong shock waves. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A revision of some well‐known discretization techniques for the numerical boundary conditions in 1D shallow‐water flow models is presented. More recent options are also considered in the search for a fully conservative technique that is able to preserve the good properties of a conservative scheme used for the interior points. Two conservative numerical schemes are used as representatives of the families of explicit and implicit numerical methods. The implementation of the different boundary options to these schemes is compared by means of the simulation of several test cases with exact solution. The schemes with the global conservation boundary discretization are applied to the simulation of a real river flood wave leading to very satisfactory results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
In view of the developing construction in mountainous regions where there is danger from avalanches, the problem of protection against avalanches has become timely. In the solution of this problem, various methods can be used in practice; in connection with the use of these methods, there arise a great number of engineering and mechanical problems. In particular, in the design of structures for protection against avalanches, information is needed on the parameters of moving avalanches, i.e., on velocities, heights of the front, densities of the snow, etc., that is to say, calculations of the motion of avalanches along a slope, as well as of their interaction with the structure under consideration. From a practical point of view, information on the maximal range of the throw, i.e., on the boundary of the avalanche danger zone, is also important. The present article is devoted to an analytical and numerical investigation of the one-dimensional motion of an avalanche; an asymptotic solution is obtained to the problem of the one-dimensional motion of an avalanche along a homogeneous slope.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 7–14, September–October, 1973.  相似文献   

18.
We investigate the equations of motion of large snow avalanches, and in contrast with [1–3] we take into account the fact that the dry friction can reach a critical value above which the snow in the avalanche or the underlaying material cannot sustain the friction. We find asymptotic solutions for long times after the beginning of motion. These solutions describe the avalanche motion in which a part of the snow moves in the conditions of limiting friction over a tilted plane with a uniform layer of snow. The equations which are used to find these asymptotic solutions have the property that for certain depths the flow velocity of small perturbations decreases with increasing depth. This is related to a number of unusual features (from the hydraulic point of view) of the solutions. In particular, on relatively gentle slopes two zones are formed in the avalanche: the forward part, with a large velocity and thickness of the moving layer, and the rear part, which is significantly slower and thinner. The two parts are separated by a narrow region characterized by a sharp decline in velocity and thickness of the moving layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 30–37, September–October, 1977.  相似文献   

19.
High‐resolution total variation diminishing (TVD) schemes are widely used for the numerical approximation of hyperbolic conservation laws. Their extension to equations with source terms involving spatial derivatives is not obvious. In this work, efficient ways of constructing conservative schemes from the conservative, non‐conservative or characteristic form of the equations are described in detail. An upwind, as opposed to a pointwise, treatment of the source terms is adopted here, and a new technique is proposed in which source terms are included in the flux limiter functions to get a complete second‐order compact scheme. A new correction to fix the entropy problem is also presented and a robust treatment of the boundary conditions according to the discretization used is stated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
A previously developed numerical model that solves the incompressible, non‐hydrostatic, Navier–Stokes equations for free surface flow is analysed on a non‐uniform vertical grid. The equations are vertically transformed to the σ‐coordinate system and solved in a fractional step manner in which the pressure is computed implicitly by correcting the hydrostatic flow field to be divergence free. Numerical consistency, accuracy and efficiency are assessed with analytical methods and numerical experiments for a varying vertical grid discretization. Specific discretizations are proposed that attain greater accuracy and minimize computational effort when compared to a uniform vertical discretization. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号