首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have measured the rates and product yields of dediazoniation of 2‐ and 3‐methylbenzenediazonium tetrafluoroborate in the presence and absence of electrolytes like HCl, NaCl, and CuCl2 using a recently reported methodology that allows simultaneous determination of product concentrations and rates of product formation and, indirectly, loss of starting material. Activation parameters were also obtained: enthalpies of activation are high, and entropies of activation are positive. All results are consistent with a heterolytic mechanism involving the fragmentation of the arenediazonium ion into a very reactive phenyl cation. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 73–82, 1999  相似文献   

2.
One‐pot reaction of equimolar amounts of phthaloyl chloride and N‐aryl‐benzamidrazones in the presence of two equivalents of triethylamine (Et3N), gave at r.t. 4‐aryl‐3‐(o‐carboxyphenyl)‐5‐phenyl‐1,2,4‐triazoles in good yields. The structure of the obtained products was proved by IR, mass, NMR spectra, and elemental analyses. The mechanism of product formation is discussed.  相似文献   

3.
Helical structures are interesting due to their inherent chirality. Helicenium ions are triarylmethylium structures twisted into configurationally stable helicenes through the introduction of two heteroatom bridges between the three aryl substituents. Of the configurationally stable [4]helicenium ions, derivatives with sulfur, oxygen and nitrogen bridges have already been synthesised. However, one [4]helicenium ion has proven elusive, until now. We present herein the first synthesis of the 1,13‐dimethoxychromeno[2,3,4‐kl]acridinium (DMCA+) [4]helicenium ion. A series of six differently N‐substituted DMCA+ ions as their hexafluorophosphate salts are reported. Their cation stability was evaluated and it was found that DMCA+ is ideally suited as a phase‐transfer catalyst with a pKR+ of 13.0. The selectivity of nucleophilic addition to the central carbon atom of DMCA+ has been demonstrated with diastereotopic ratios of up to 1:10. The single‐crystal structures of several of the DMCA+ salts were determined, and structural differences between N‐aryl‐ and N‐alkyl‐substituted cations were observed. The results of a comparative study of the photophysics of the [4]helicenium ions are presented. DMCA+ is found to be a potent red‐emitting dye with a fluorescence quantum yield of 20 % in apolar solvents and a fluorescence lifetime of 12 ns. [4]Helicenium ions, including DMCA+, all suffer from solvent‐induced quenching, which reduces the fluorescence quantum yields significantly (?fl<5 %) in polar solvents. A difference in photophysical properties is observed between N‐aryl‐ and N‐alkyl‐substituted DMCA+, which has tentatively been attributed to a difference in molecular conformation.  相似文献   

4.
Rate constants for dediazoniation product formation and arenediazonium ion loss and product yields of solvolysis of o‐methylbenzenediazonium tetrafluoroborate in acidic methanol‐water mixtures at T = 35°C are reported. Observed rate constants for diazonium ion loss and product formation are the same, increasing about 45% ongoing from water to methanol, and are not affected by added electrolytes like HCl, NaCl, and CuCl2. Only three dediazoniation products are detected, o‐cresol, o‐chlorotoluene, and o‐anisole. All data are consistent with a rate‐determining step formation of an aryl cation that reacts immediately with available nucleophiles. The selectivity of the reaction toward nucleophiles, S, which can be defined by: is low and essentially constant upon changing solvent composition, suggesting that the nucleophilic attack takes place on a solvent separated aryl cation. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 531–538, 1999  相似文献   

5.
A simple and efficient copper‐salt catalyzed N‐arylation of nucleobases is reported. In a mixed solvent of MeOH and H2O, the coupling products were obtained in moderate to excellent yields at room temperature within a short time. A variety of substituted N‐aryl nucleobases can be prepared through this procedure.  相似文献   

6.
The dipole moments of twelve 2‐N‐substituted amino‐5‐nitro‐4‐methylpyridines ( I‐XII ) and three 2‐N‐substituted amino‐3‐nitro‐4‐methylpyridines ( XIII‐XV ) were determined in benzene. The polar aspects of intramolecular charge‐transfer and intramolecular hydrogen bonding were discussed. The interaction dipole moments, μint, were calculated for 2‐N‐alkyl(or aryl)amino‐5‐nitro‐4‐methylpyridines. Increased alkylation of amino nitrogen brought about an intensified push‐pull interaction between the amino and nitro groups. The solvent effects on the dipole moments of 2‐N‐methylamino‐5‐nitro‐4‐methyl‐( I ), 2‐N,N‐dimethylamino‐5‐nitro‐4‐methyl‐ ( II ) and 2‐N‐methylamino‐3‐nitro‐4‐methylpyridines ( XIII ) were different. Specific hydrogen bond solute‐solvent interactions increased the charge‐transfer effect in I , but it did not disrupt the intramolecular hydrogen bond in XIII.  相似文献   

7.
The synthesis of N‐arylimidazoles substituted at the sterically encumbered 5‐position is a challenge for modern synthetic approaches. A new family of imidazolyl aryliodonium salts is reported, which serve as a stepping stone on the way to selective formation of N1‐aryl‐5‐iodoimidazoles. Iodine acts as a “universal” placeholder poised for replacement by aryl substituents. These new λ3‐iodanes are produced by treating the NH‐imidazole with ArI(OAc)2, and are converted to N1‐aryl‐5‐iodoimidazoles by a selective copper‐catalyzed aryl migration. The method tolerates a variety of aryl fragments and is also applicable to substituted imidazoles.  相似文献   

8.
New N‐Alkyl‐substituted imidazolium salts as well as a series of their corresponding [Pd(NHC)(MA)2] complexes have been obtained by three routes in good yield. The previously reported synthesis for the analogous N‐aryl substituted [Pd(NHC)(MA)2] complexes has been improved. The N‐alkyl‐substituted [Pd(NHC)(MA)2] complexes are thermally more labile than their N‐aryl counterparts. Catalytic transfer semi‐hydrogenation of phenylpropyne resulted in good to excellent chemo‐ and stereo‐ selectivity conversion into (Z)‐phenylpropene. The size of the alkyl substituents correlates with the rate of hydrogenation in the sense that more bulky substituents give rise to faster transfer hydrogenation rates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Lewis acids catalyzed highly efficient one‐pot three component coupling of β‐naphthol, benzaldehydes and urea to produce 1‐aryl‐1,2‐dihydro‐naphtho[1,2‐e][1,3]oxazin‐3‐one derivatives under solvent free conditions is described. Mechanistic studies confirmed that product formation is possible only at very high temperature (140–150°C) and at lower temperature (90–100°C) formation of 14‐aryl‐14H‐dibenzo(a,j)xanthenes was observed. Among the nine Lewis acids screened, iodine, P2O5 and Yb(OTf)3 are found to be most effective catalyst for this multicomponent reaction.  相似文献   

10.
In the three isomeric salts, all C6H7N2O+·C6HCl2O4, of chloranilic acid (2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone) with 2‐, 3‐ and 4‐carbamoylpyridine, namely, 2‐carbamoylpyridinium hydrogen chloranilate (systematic name: 2‐carbamoylpyridinium 2,5‐dichloro‐4‐hydroxy‐3,6‐dioxocyclohexa‐1,4‐dienolate), (I), 3‐carbamoylpyridinium hydrogen chloranilate, (II), and 4‐carbamoylpyridinium hydrogen chloranilate, (III), acid–base interactions involving H‐atom transfer are observed. The shortest interactions between the cation and the anion in (I) and (II) are pyridinium N—H...(O,O) bifurcated hydrogen bonds, which act as the primary intermolecular interaction in each crystal structure. In (III), an amide N—H...(O,O) bifurcated hydrogen bond, which is much weaker than the bifurcated hydrogen bonds in (I) and (II), connects the cation and the anion.  相似文献   

11.
A concise, convenient and mild route for one‐pot regioselective synthesis of N‐aryl‐ and N‐alkyltriazoles in water as a sole solvent is reported. The methodology involves a three‐component reaction comprising aryl/alkyl‐alkyne, sodium azide and aryl/alkyl/allyl halide catalyzed by zinc(II) L ‐prolinate. Prominent features of our protocol are incorporation of transition metal catalyst other than copper, water as the reaction medium, recyclability of catalyst and avoidance of hazardous aryl azide as a reactant. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A new one‐pot, four‐component synthetic rout is reported for the preparation of functionalized N‐acyl‐2alkylimino‐2,3‐dihydrothiazole derivatives from the reaction between acid chlorides, ammonium thiocyanate, primary alkylamines, and ethyl bromopyruvate under mild, solvent‐ and catalyst‐free conditions at room temperature. This completely green and efficient straight forward procedure led to the desired products in good to high yields without any need to catalyst or solvent assistance and no by product was observed in all the reactions  相似文献   

13.
Substituent‐ and oxidant‐dependent transformations of allenes are described. Given the profound influence of the substituent on the reactivity of allenes, the subtle differences in allene structures are manifested in the formation of diverse products when reacted with different electrophiles/oxidants. In general, reactions of nonsilylated allenes involve an allylic cation intermediate by forming a C?O bond, at the sp‐hybridized C2, with either DDQ (2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone) or TBHP (tert‐butyl hydroperoxide), along with FeCl2?4 H2O (10 mol %). In contrast, silylated allenes favor the formation of propargylic cation intermediates by transferring the allenic hydride to the oxidant, thus generating 1,3‐enynes (E1 product) or propargylic THBP ethers (SN1 product). The formation of these different putative cationic intermediates from nonsilylated and silylated allenes is strongly supported by DFT calculations.  相似文献   

14.
In this work, the time‐dependent density functional theory (TDDFT) method was carried out to investigate the hydrogen‐bonded intramolecular charge‐transfer excited state of 2‐(4′‐N,N‐dimethylaminophenyl)imidazo[4,5‐b]pyridine (DMAPIP) in methanol (MeOH) solvent. All the geometric conformations of the ground state and locally excited (LE) state and the twisted intramolecular charge‐transfer (TICT) state for isolated DMAPIP and its hydrogen‐bonded complexes have been optimized. At the same time, the absorption and fluorescence spectra of DMAPIP and the hydrogen‐bonded complexes in different electronic states are also calculated. We theoretically demonstrated for the first time that the intermolecular hydrogen bond formed between DMAPIP and MeOH can induce the formation of the TICT state for DMAPIP in MeOH solvent. Therefore, the two components at 414 and 506 nm observed in the fluorescence spectra of DMAPIP in MeOH solvent were reassigned in this work. The fluorescence peak at 414 nm is confirmed to be the LE state. Furthermore, the red‐shifted shoulder at 506 nm should be originated from the hydrogen‐bonded TICT excited state. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

15.
3,4‐Dibromo‐5‐[2‐bromo‐3,4‐dihydroxy‐6‐(methoxymethyl)benzyl]benzene‐1,2‐diol ( 2 ), a natural product, has been synthesized for the first time starting from (3‐bromo‐4,5‐dimethoxyphenyl)methanol ( 5 ) in five steps and with an overall yield of 34%. The reaction of some methoxymethyl‐substituted aryl methyl ethers with BBr3, followed by the addition of MeOH, afforded the corresponding methoxymethyl‐substituted arylphenols in high yields.  相似文献   

16.
The solvolysis of eight 9‐aryl‐9‐bromofluorenes ( 6b~6i ) in a variety of solvents were studied. Correlation analysis using single‐parameter Grunwald‐Winstein equation (Eqn. 1) with different Y scales showed good linearity (R ≥ 0.98) for most cases if YxBnBr was employed. Linear relationships were observed from Hammett‐type analysis of logarithm of rate constants using Brown‐Okamoto σ+ constants (Eqn. 3), although inverse order of k(p‐CF3)/k(m‐ CF3) was realized in a number of cases. The ρ values were found to vary slightly with different solvent systems. Calculated atomic charge reveals the similarity between 9‐phenyl‐9‐fluorenyl cation ( 7 ) and triphenylmethyl cation ( 8 ). An extended charge delocalization throughout the fluorenyl ring led to the conclusion of the insignificance of antiaromaticity, which was in harmony with that obtained in previous studies. The variation of relative kBr/kCl rate ratios was attributed to the electrophilic pull by solvents in solvolysis.  相似文献   

17.
The present work describes the use of Pd(0)‐ S‐propyl‐2‐aminobenzothioate Complex immobilized onto functionalized magnetic nanoporous MCM‐41(Fe3O4@MCM‐41@Pd‐SPATB) as efficient and recyclable nano‐organometallic catalyst for C–C bond formation between various aryl halides with phenylboronic acid (Suzuki reaction), aryl halides with triphenyltin chloride (Stille reaction), and aryl halides with n‐butyl acrylate (Heck reaction). All the reactions were carried out in PEG‐400 as green solvent with short reaction time and good to excellent yields. This catalyst was characterized by FT‐IR spectroscopy, XRD, TGA, VSM, ICP‐OES, TEM, EDX and SEM techniques. Ease of operation, high efficiency, recovery and reusability for five continuous cycles without significant loss of its catalytic activities or metal leaching are the noteworthy features of the currently employed heterogeneous catalytic system.  相似文献   

18.
The title compound, [Cu(C9H13N5O2)(CH4O)](NO3)2, consists of square‐planar cationic complex units where the CuII centre is coordinated by an N,N′,O‐tridentate pyridoxal–aminoguanidine Schiff base adduct and a methanol molecule. The tridentate ligand is a zwitterion exhibiting an almost planar conformation. The dihedral angles between the mean planes of the pyridoxal ring and the six‐ and five‐membered chelate rings are all less than 2.0°. The charge on the complex cation is neutralized by two nitrate counter‐ions. Extensive N—H...O and C—H...O hydrogen bonding connects these ionic species and leads to the formation of layers. The pyridoxal hydroxy groups are the only fragments that deviate significantly from the flat layer structure; these groups are involved in O—H...O hydrogen bonding, connecting the layers into a three‐dimensional crystal structure.  相似文献   

19.
An efficient approach for the preparation of functionalized 2‐aryl‐2,5‐dihydro‐5‐oxo‐4‐[2‐(phenylmethylidene)hydrazino]‐1H‐pyrroles is described. The four‐component reaction between aldehydes, NH2NH2?H2O, dialkyl acetylenedicarboxylates, and 1‐aryl‐N,N′‐bis(arylmethylidene)methanediamines proceeds in EtOH under reflux in good‐to‐excellent yields (Scheme 1). The structures of 4 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS, and, in the case of 4f , by X‐ray crystallography). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

20.
Nonmesogenic 2,3,12,13‐tetrabromo‐5,10,15,20‐tetrakis(4‐butoxyphenyl)porphyrin crystallizes as the title 1,2‐dichloroethane solvate, C60H58Br4N4O4·C2H4Cl2. The porphyrin ring shows a nonplanar conformation, with an average mean plane displacement of the β‐pyrrole C atoms from the 24‐atom (C20N4) core of ±0.50 (3) Å. The 1,2‐dichloroethane solvent is incorporated between the porphyrin units and induces the formation of one‐dimensional chains via interhalogen Cl...Br and butyl–aryl C—H...π interactions. These chains are oriented along the unit‐cell a axis, with the macrocyclic ring planes lying almost parallel to the (010) plane. The chains are arranged in an offset fashion by aligning the butoxy chains approximately above or below the faces of the adjacent porphyrin core, resulting in decreased interporphyrin π–π interactions, and they are held together by weak intermolecular (C—Br...π, C—H...π and C—H...Br) interactions. The nonplanar geometry of the macrocyclic ring is probably due to the weak interporphyrin interactions induced by the solvent molecule and the peripheral butoxy groups. The nonplanarity of the mesogens could influence the mesogenic behaviour differently relative to planar porphyrin mesogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号