首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
《Solid State Sciences》2000,2(5):563-568
The reaction of Rb2S3, Ta and S at 723 K yields red–orange crystals of the new ternary compound Rb6Ta4S25. It crystallizes in the monoclinic space group C2/c (No. 15) with a=36.943(2), b=8.1028(3), c=12.6415 (8) Å, β=98.858 (7)°, V=3739.0(4) Å3 and Z=4. In the crystal structure two Ta2S11 units are connected by a S3 chain forming the [Ta4S25]6− anion. Each Ta5+ ion is surrounded by seven sulfur ions forming a strongly distorted pentagonal bipyramid. The coordination mode around the Ta5+ centers may be formulated as [(Ta2221-S2)32-S2)(S)2)2211-S5)]6−. The anions are stacked parallel to the crystallographic b axis and are separated by the Rb+ ions. With UV–Vis spectroscopic investigations the optical band gap of 2.35 eV was determined. Measurements using differential-scanning calorimetry show an irreversible loss of three sulfur atoms at 681 K leading to the formation of Rb6Ta4S22.  相似文献   

2.
The new compounds K6Nb4S22 and K6Ta4S22 ( I ) have been synthesised by the reaction of NbS2 or Ta metal in a K2S3 flux. Using TaS2 as educt a second modification of K6Ta4S22 ( II ) is obtained. K6Nb4S22 and K6Ta4S22 (form I ) crystallise in the monoclinic space group C2/c with a = 35.634 (2)Å, b = 7.8448 (4)Å, c = 12.1505 (5)Å, β = 100.853 (5)°, V = 3335.8 (3)Å3, and Z = 4 for K6Nb4S22 and a = 35.563 (7) Å, b = 7.836 (2)Å, c = 12.139 (2)Å, β = 100.56 (3)°, V = 3325.5 (2)Å3, and Z = 4 for K6Ta4S22 ( I ). The second modification K6Ta4S22 (form II ) crystallises in the monoclinic space group P21/c with a = 7.5835 (6)Å, b = 8.7115 (5)Å, c = 24.421 (2)Å, β = 98.733 (9)°, V = 1594.6 (2)Å3, and Z = 2. The structures consist of [M4S22]6— anions composed of two M2S11 sub‐units which are linked into M4S22 units via terminal sulfur ligands. The anions are well separated by the K+ cations. Differences between the structures of the title compounds and those with the heavier alkali cations Rb+ and Cs+ are caused by the different arrangement of the [M4S22]6— anions around the cations and the different S2—/S22— binding modes. The thermal behaviour of both modifications was investigated using differential scanning calorimetry (DSC). From these investigations there is no hint for a polymorphic transition between the two forms. After heating crystals of form II above the melting point and cooling the melt to room temperature a crystalline powder of form I can be isolated.  相似文献   

3.
Cs6Ta4S22     
The reaction of Cs2S3, Ta and S yields single crystals of the new caesium tantalum chalcogenide hexacaesium tetratantalum docosa­sulfide, Cs6Ta4S22, which is isotypic with Rb6Ta4S22 and the niobium compounds A6Nb4S22 (A = Rb, Cs). The structure consists of discrete [Ta4S22]6? anions and Cs+ cations.  相似文献   

4.
On Polychalcogenides of Thallium with M2Q11 Groups as a Structural Building Block. I Preparation, Properties, X‐ray Diffractometry, and Spectroscopic Investigations of Tl4Nb2S11 and Tl4Ta2S11 The new ternary compounds Tl4Nb2S11 and Tl4Ta2S11 were prepared using Thallium polysulfide melts. Tl4M2S11 crystallises isotypically to K4Nb2S8.9Se2.1 in the triclinic space group P 1 with a = 7.806(2) Å, b = 8.866(2) Å, c = 13.121(3) Å, α = 72.72(2)°, β = 88.80(3)°, and γ = 85.86(2)° for M = Nb and a = 7.837(1) Å, b = 8.902(1) Å, c = 13.176(1) Å, α = 72.69(1)°, β = 88.74(1)°, and γ = 85.67(1)° for M = Ta. The interatomic distances as well as angles within the [M2S11]4– anions are similar to those of the previously reported data for analogous alkali metal polysulfides. Significant differences between Tl4M2S11 and A4M2S11 (A = K, Rb, Cs) are obvious for the shape of the polyhedra around the electropositive elements. The two title compounds melt congruently at 732 K (M = Nb) and 729 K (M = Ta). The optical band gaps were estimated as 1.26 eV for Tl4Nb2S11 and as 1.80 eV for the Tantalum compound.  相似文献   

5.
The new ternary potassium tantalum polysulfide K4Ta2S11 crystallizing in the triclinic space group P1 with a = 7.465(2), b = 11.441(3), c = 11.534(3) Å, α = 68.66(2), β = 86.59(2) and γ = 83.09(2)° represents a second modification of the already known orthorhombic form, space group Pca21 with a = 13.166(2), b = 7.449(2) and c = 18.000(2) Å. The interatomic distances and angles within the Ta2S114– anions of both forms are very similar, but significant differences are observed for the S…S distances between neighboured anions. Temperature dependent single crystal X‐ray experiments yield thermal expansion coefficients of 9.88(30) and 9.44(4) 10–5 K–1 for the triclinic and orthorhombic compound, respectively. The higher density for the orthorhombic form indicates that this modification is the thermodynamical more stable form at low temperatures. This assumption is supported by calculations of the electrostatic contributions to the lattice energies using MAPLE (Madelung part of lattice energy). The lattice energy of the orthorhombic form is about 46 kJ mol–1 larger than that of the triclinic modification. Small differences are observed in the MIR (Medium Infrared Range) spectra of the two dimorphs which correlate well with the slightly different Ta = S bond lengths within the Ta2S114– anions. The compounds were also characterized using UV/Vis reflectance spectroscopy.  相似文献   

6.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

7.
The new ternary niobium polysulfides A6Nb4S22 were prepared at a low temperature of 350°C via the molten flux method by reacting A2S3 (A = Rb, Cs) with niobium metal and additional sulfur. The crystal structure is characterized by [Nb4S22]6? anions. Two Nb2S10 subunits are joined by a S22?. Nb5+ is coordinated by S22? and S2? ligands according to [Nb2(μ-η2, η1-S2)(η2-S2)3(S)2]2(μ-η1-S2)6?. Every Nb is in a sixfold coordination, and the polyhedra can be regarded as strongly distorted pentagonal pyramids. Within the unit cell the anions are stacked in “rods” parallel to the crystallographic b-axis. These stacks are arranged in “layers” and the A+ ions are located between the layers.  相似文献   

8.
The new compound K6Ti6S18O was prepared by the reaction of stoichiometric amounts of K2S5, Ti, TiO, and S at 400 °C. It crystallises in the triclinic space group P1 with a = 9.602(2) Å, b = 9.682(2) Å, c = 9.856(2) Å, α = 104.78(1)°, β = 107.04(3)°, γ = 112.56(1)°, V = 735.6(3) Å3, Z = 1. The structure is comprised of discrete [Ti6S18O]6– anions separated by K+ cations. The main structural feature is a Ti6 octahedron which is centred by an interstitial oxygen atom yielding the Ti6O unit. This unit is surrounded by a S8 cube and every Ti atom is bound to terminal S2– or S22– anions. The anion may be described as {[Ti6(O)Si8](S2–)a2(S22–)a4}6–.  相似文献   

9.
The Metal‐rich Layer Structure of Ta6STe3 Ta6S1+xTe3–x was prepared from an appropriate mixture of 2 H–Ta1.3S2, TaTe2, and Ta in a fused tantalum tube at 1273 K within 3 d. The results of a X‐ray single crystal structure analysis for a phase near the Te‐rich limit of the homogeneity range are reported. Ta6S1.00Te3.00(1) crystallizes in the triclinic space group P1, a = 993.14(8) pm, b = 1032.18(8) pm, c = 1378.78(11) pm, α = 79.32(1)°, β = 81.36(1)°, γ = 85.74(1)°, Z = 6, Pearson symbol aP60, 6048 Io > 2σ (Io), 286 variables, wR2 = 0.067. The metal‐rich layer structure of Ta6STe3 comprises distorted icosahedral Ta13 clusters and related deltahedral cluster fragments complemented by chalcogen atoms. The centred clusters consist of 11, 12, 13, 14, or 16 atoms. They interpenetrate into lamellae in which the tantalum and chalcogen atoms are spatially segregated according to [Q–Ta3–Q]. The signature of the structure is a lenticular heptagonal antiprismatic Ta30 cluster which seems to be excised from the pentagonal antiprismatic columnar structure of Ta6S. The Ta30 clusters and distorted icosahedral Ta13 clusters are connected and fused into puckered layers. The rest of the tantalum valences are used for heteronuclear bonding. The chalcogen atoms having three to six next tantalum atoms coat the corrugated, tetrahedrally close‐packed layers. Ta6STe3 is a moderate metallic conductor (ρ293 K = 3 × 10–4 Ωcm) exhibiting typical temperature independent paramagnetic properties.  相似文献   

10.
Concentrated aqueous solutions of magnesium chloride and calcium nitrate, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4 · H2O, the isolation of the earth alkaline salts MgC4S4 · 6 H2O ( 1 ) and CaC4S4 · 4 H2O ( 2 ) as orange and red crystals. The crystal structure determinations ( 1 : monoclinic, C2/c, a = 17.2280(7), b = 5.9185(2), c = 13.1480(4) Å, β = 104.730(3)°, Z = 4; 2 : monoclinic, P21/m, a = 7.8515(3), b = 12.7705(5), c = 10.6010(4) Å, β = 93.228(2)°, Z = 4) show the presence of C4S42? ions with almost undistorted D4h symmetry having average C–C and C–S bond lengths of 1.451Å and 1.659Å for 1 and 1.451Å and 1.655Å for 2 . The structure of 1 contains discrete, octahedral [Mg(H2O)6]2+ complexes. Several O–H····O and O–H····S bridges with H····O and H····S distances of less than 2.50Å connect cations and anions. The structure of 2 is built of concatenated, edge‐sharing Ca(H2O)6S2 polyhedra. The Ca2+ ions have the coordination number eight, C4S42? act as a chelating ligands towards Ca2+ with Ca–S distances of 3.14Å. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

11.
《Solid State Sciences》2004,6(1):109-116
The exploration of the CsReSBr system, in order to identify new phases based on octahedral cluster anions, has produced single crystals of Cs4Re6S8Br6 (1) (trigonal, space group P-6c2, a=9.7825 (3) Å, c=18.7843 (5) Å, V=1556.77 (1) Å3, Z=2, density=5.09 g cm−3, μ=36.07 mm−1) and Cs2Re6S8Br4 (2) (monoclinic, space group P21/n, a=6.3664 (1) Å, b=18.4483 (4) Å, c=9.3094 (2) Å, β=104.2618 (8)°, V=1059.69 (4) Å3, Z=2, density=6.14 g cm−3, μ=45.83 mm−1). These two compounds have been obtained by high-temperature solid state route. Their structures have been solved and refined from single crystal X-ray diffraction data. The structure of Cs4Re6S8Br6 presents isolated anionic cluster units inscribed in a (Cs+)12 cuboctahedron and the one of Cs2Re6S8Br4 exhibits ReSi-a,a-iRe inter-unit bridges. The framework of the latter presents then a strongly 1-D character.  相似文献   

12.
Sr3(BS3)2 and Sr3(B3S6)2: Two Novel Non‐oxidic Chalcogenoborates with Boron in a Trigonal‐Planar Coordination The thioborates Sr3(BS3)2 and Sr3(B3S6)2 were prepared from strontium sulfide, amorphous boron and sulfur in solid state reactions at a temperature of 1123 K. In a systematic study on the structural cation influence on this type of ternary compounds, the crystal structures were determined by single crystal X‐ray diffraction. Sr3(BS3)2 crystallizes in the monoclinic spacegroup C2/c (No. 15) with a = 10.187(4) Å, b = 6.610(2) Å, c = 15.411(7) Å, β = 102.24(3)° and Z = 4. The crystal structure of Sr3(B3S6)2 is trigonal, spacegroup R3¯ (Nr. 148), with a = 8.605(1) Å, c = 21.542(4) Å and Z = 3. Sr3(BS3)2 contains isolated [BS3]3— anions with boron in a trigonal‐planar coordination. The strontium cations are found between the layers of orthothioborate anions. Sr3(B3S6)2 consists of cyclic [B3S6]3— anions and strontium cations, respectively.  相似文献   

13.
The new ternary compound Tl4Ta2Se11 was prepared in a melt of thallium polyselenides applying elemental tantalum. It crystallises in the triclinic space group P1¯ with a = 7.996(1) Å, b = 9.866(1) Å, c = 13.668(2) Å, α = 73.03(1)°, β = 89.21(2)° and γ = 85.72(1)°. Tl4Ta2Se11 is the first polyselenide with discrete complex [M2Se11]4— anions. Every Ta atom is in a sevenfold environment of Se atoms to form a distorted pentagonal bi‐pyramid. The two TaSe7 polyhedra have a face in common thus yielding the [Ta2Se11]4— unit. In the structure, the anions are well separated by the Tl1+ cations. An assignment of the different vibration modes in the IR and Raman spectra is given based on density functional calculations.  相似文献   

14.
The η2‐thio‐indium complexes [In(η2‐thio)3] (thio = S2CNC5H10, 2 ; SNC4H4, (pyridine‐2‐thionate, pyS, 3 ) and [In(η2‐pyS)22‐acac)], 4 , (acac: acetylacetonate) are prepared by reacting the tris(η2‐acac)indium complex [In(η2‐acac)3], 1 with HS2CNC5H10, pySH, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively. All of these complexes are identified by spectroscopic methods and complexes 2 and 3 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 : space group, C2/c with a = 13.5489(8) Å, b = 12.1821(7) Å, c = 16.0893(10) Å, β = 101.654(1)°, V = 2600.9(3) Å3, and Z = 4. The structure was refined to R = 0.033 and Rw = 0.086; Crystal data for 3 : space group, P21 with a = 8.8064 (6) Å, b = 11.7047 (8) Å, c = 9.4046 (7) Å, β = 114.78 (1)°, V = 880.13(11) Å3, and Z = 2. The structure was refined to R = 0.030 and Rw = 0.061. The geometry around the metal atom of the two complexes is a trigonal prismatic coordination. The piperidinyldithiocarbamate and pyridine‐2‐thionate ligands, respectively, coordinate to the indium metal center through the two sulfur atoms and one sulfur and one nitrogen atoms, respectively. The short C‐N bond length in the range of 1.322(4)–1.381(6) Å in 2 and C‐S bond length in the range of 1.715(2)–1.753(6) Å in 2 and 3 , respectively, indicate considerable partial double bond character.  相似文献   

15.
RuS4Cl12 and Ru2S6Cl16, Two New Ruthenium(II) Complexes with SCl2 Ligands Ru powder was reacted with SCl2 in closed silika ampoules at 140 °C. From the black solution three compounds RuS4Cl12 1 , Ru2S6Cl16 2 , and Ru2S4Cl13 3 could be crystallized and characterized by x ray analysis. Black crystals of 1 (monoclinic, a = 9.853(1) Å, b = 11.63(1) Å, c = 15.495(1) Å, β = 105.23(1)°, space group P21/c, z = 4) are identified as Trichlorsulfonium‐tris(dichlorsulfan)trichloro‐ruthenat(II) SCl3[RuCl3(SCl2)3]. In the structure the complex anions fac‐[RuCl3(SCl2)3] and the cations [SCl3]+ are connected to ion pairs by three chlorine bridges. The brown crystals of 2 (triclinic, a = 7.754(2) Å, b = 7.997(2) Å, c = 10.708(2) Å, α = 103.74(3)°, β = 98.44(3)°, γ = 108.58(3)°, space group P‐1, z = 1) contain the binuclear complex Bis‐μ‐chloro‐dichloro‐hexakis(dichlorsulfan)‐diruthenium(II), (SCl2)3ClRu(μ‐Cl)2RuCl(SCl2)3 with two fac‐RuCl3(SCl2)3‐units connected by two chlorine bridges. 3 was identifyed as a known mixed valence Ru(II,III) binuclear complex [Cl2(SCl2)Ru(μ‐Cl)3Ru(SCl2)3]. The vibrational spectra and the thermal behaviour of the compounds are discussed.  相似文献   

16.
Systematic studies on thio‐ and selenoborates containing heavier metal cations led to the new crystalline phase EuB2S4. The crystal structure of the europium metathioborate reveals polymeric [(B2S4)2—]n anions and divalent Eu‐cations which are connected via ionic interactions. The building blocks of the anions consist of BS4‐tetrahedra. Condensation of these BS4‐tetrahedra leads to corner‐ and edge‐sharing 2D‐networks running parallel to (1 0 0). Evacuated carbon coated silica tubes were used as reaction vessels since temperatures up to 990 K were applied. EuB2S4 crystallizes in the monoclinic space group P21/c (no. 14) with a = 6.4331(6)Å, b = 14.099(1)Å, c = 6.0731(6)Å, β = 110.55(8)° and Z = 4.  相似文献   

17.
LiBaBS3 and LiBaB3S6: Two New Quaternary Thioborates with Trigonally Coordinated Boron LiBaBS3 (P21/c; a = 7.577(2) Å, b = 8.713(2) Å, c = 8.687(2) Å, β = 116.22(2)°; Z = 4) und LiBaB3S6 (Cc; a = 15.116(3) Å, b = 8.824(2) Å, c = 8.179(2) Å, β = 117.46(3)°; Z = 4) were prepared by reaction of stoichiometric amounts of the metal sulfides, boron, and sulfur at 750°C. The anionic part of the structure of the orthothioborate LiBaBS3 consists of isolated planar [BS3]3? anions. The crystal structure of the metathioborate LiBaB3S6 contains [B3S6]3? anions formed by six-membered B3S3 rings with three exocyclic sulfur atoms. The metal cations are situated between the anion units leading to a ninefold sulfur coordination of the barium atoms and to a fivefold (LiBaBS3) and fourfold (LiBaB3S6) coordination of the lithium atoms.  相似文献   

18.
Concentrated aqueous solutions of strontium chloride and barium chloride, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4·H2O, the isolation of the earth alkaline salts SrC4S4·4 H2O ( 1 ) and Ba4K2(C4S4)5·16 H2O ( 2 ), both as dark red crystals. The crystal structure determinations ( 1 : orthorhombic, Pnma, a = 8.149(1), b = 12.907(2), c = 10.790(2) Å, Z = 4; 2 : orthorhombic, Pbca, a = 15.875(3), b = 21.325(5), c = 16.119(1) Å, Z = 4) show the presence of C4S42− ions with only slightly distorted D4h symmetry having average C–C and C–S bond lengths of 1.41Å and 1.681Å for 1 and 1.450Å and 1.657Å for 2 . The structure of 1 contains concatenated edge‐sharing Sr(H2O)6S2 polyhedra. The Sr2+ ions are in eight‐fold coordination with Sr–O distances of 2.50–2.72Å and Sr–S distances of 3.21Å, (C4S4)2− acts as a chelating ligand towards Sr2+. The structure is closely related to the previously reported Ca2+ containing analogue, which is of lower symmetry belonging to the monoclinic crystal system. A supergroup‐subgroup relation between the space groups of both structures is present. The structure of 2 is made up of Ba2+ and K+ ions in eight and nine‐fold coordination by H2O molecules and (C4S4)2− ions which act as chelating ligands towards one cation and bridging between two cations. The coordination polyhedra of the cations are connected by common edges and corners in two dimensions to layers which are connected by tetrathiosquarate ions to a three‐dimensional network. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

19.
Syntheses and Crystal Structures of Cu and Ag Complexes with [Ta6S17]4— Ions as Ligands In the presence of phosphines saturated solutions of the thiotantalates (NEt4)4[(Ta6S17)] · 3MeCN react with copper or silver salts to give new heterobimetallic Ta—M—S clusters (M = Ag, Cu). These clusters contain the intact cluster core of the [Ta6S17]4— anion. Compounds [Cu(PMe3)4]3[(Ta6S17)Cu(PMe3)] · 2MeCN ( 1 ), (NEt4)[(Ta6S17)Ag3(PMe2iPr)6] · 5MeCN ( 2 ), [(Ta6S17)Cu4 (PMe2iPr)8] · MeCN ( 3 ), [(Ta6S17)Cu5Cl(PMe2iPr)9] · MeCN ( 4 ) and [Ta2Cu2S4Cl2(PMe2iPr)6] · 2MeCN ( 5 ) are presented herein. The structures of these compounds were elucidated by single crystal X‐ray structural analyses.  相似文献   

20.
Ta4P4S29 was prepared from the elements heated together in stoichiometric proportions in an evacuated Pyrex tube for 10 days at 500°C. The crystal symmetry is tetragonal, space group P43212, with the cell parameters: a = b = 15.5711(7) Å, c = 13.6516(8) Å, V = 3309.9(5) Å3, and Z = 4. The structure calculations were conducted from 2335 reflections and 146 variables, leading to R = 0.033. The structure basic framework, corresponding to the chemical composition [TaPS6], is made of biprismatic bicapped [Ta2S12] units (average dTaS = 2.539 Å), including sulfur pairs (average dSS = 2.039 Å), bonded to each other through [PS4] tetrahedral groups (average dPS = 2.044 Å) sharing sulfurs. This framework leaves large tunnels running along the c axis of the cell and in which (S10) sulfur chains are found to be inserted (average dSS = 2.052 Å and SSS = 105.75°). Diamagnetic and semiconducting Ta4P4S29 can be formulated: TaV4PV4(S?II)16(S?II2)4(S05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号