首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three new polythiophenes containing an azobenzene moiety in the side‐chain were synthesized and characterized. Two of them, which are slightly soluble in tetrahydrofuran to allow the preparation of thin films from solution casting, were used to investigate the photoinduced anisotropy arising from the photoisomerization of azobenzene in this type of polymer. The results show that, unlike other amorphous azobenzene polymers, only an extremely small anisotropy can be induced on excitation with an Ar+ laser at 488 nm in these azobenzene‐containing polythiophenes, and that this photoinduced anisotropy is observable only by heating the polymer to some temperatures below glass transition temperature. It is suggested that the inability for azobenzene polythiophenes to display a significant photoinduced anisotropy may be caused by some structural constraints and/or a severe interference from conjugated thiophene chains that absorb strongly in the visible region. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3445–3455, 2004  相似文献   

2.
A family of fluorinated azobenzene‐based push‐pull chromophores with one, two, and three trifluorovinyl ether (TFV) groups in linear and branched architecture was synthesized and utilized as active materials in the low optical loss electro‐optic (EO) composites. The fluorinated azobenzene chromophores exhibited increased solubility (30–50 wt %) in semifluorinated polymer host, such as perfluorocyclobutane (PFCB) aromatic ether resin after crosslinking, compared with the commercially available nonfluorinated azobenzene chromophore Disperse Red 1 (1–2 wt %). The impact of this approach on the optical properties on the polymer blends is assessed through optical propagation loss measurements and EO characterization. The resulting fluorinated EO composites showed excellent optical clarity, low birefringence, and low optical loss less than 0.5 dB/cm, while giving EO coefficients of about 3–7 pm/V at 1550 nm. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3166–3177, 2007  相似文献   

3.
We synthesized a novel photoresponsive monomer, silicon‐containing azo monomer with paired mesogens in the side chain, by reacting 3‐methacryloxypropylmethyldichlorosilane with 2‐[2‐(4‐cyano‐azobenzene‐4′‐oxy)ethylene‐oxy]ethyl alcohol, a mesogenic group. Corresponding homopolymer and copolymers with methyl methacrylate were generated via radical polymerization with AIBN as a radical initiator. Investigations of their thermal properties and optical textures confirmed the monomer and the homopolymer have smectic structures. Homo‐ and copolymer films showed high potential as reversible data recording media via photoinduced alignment of azobenzene groups with irradiation of a linearly or circularly polarized light. Out of all the samples, the copolymer films with high azo dye contents showed the best resolution in the recorded data as well as the fastest response to a pump beam due to large optical birefringence induced in a write‐in process. Strong dependence of the stability of the data stored in the films on the glass transition temperature of the polymers was also observed. In addition, high‐quality holographic grating patterns were inscribed even on the copolymer film with azo molar content of only 7.0% using a modified two‐wave mixing technique. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6734–6745, 2008  相似文献   

4.
Poly{4,4′-(1-methylethylidene)bisphenylene 3-[4-(4-nitrophenylazo)phenyl]-3-aza-pentanedioate} (pMNAP) was synthesized through the condensation polymerization of 4,4′-isopropylidene-bis-phenol and N-[4-(4-nitrophenylazo)phenyl]imido diacetyl chloride. The polymer solution in tetrahydrofuran (THF) was spin-coated onto a glass substrate to form a film and the process of reversibly photoinduced birefringence was tested. The birefringence induced in the film was observed to a level of 0.04. The biexponential fitting of the birefringence growth and relaxation curves shows two kinds of processes. A fairly low birefringence relaxation occurs after the light is turned off, about 12% at room temperature and less than 50% at 138°C, close to the glass transition temperature (152°C). pMNAP decomposes at about 160°C which prevents its use as a material for optical storage. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Photo‐chemically tunable photonic band gap materials are prepared by infiltration of liquid crystal polymers having azobenzene groups into voids of SiO2 inverse opal films. Linearly polarized (LP) light irradiation results in transformation from a random to an anisotropic molecular orientation of azobenzene side chains in the voids of the SiO2 inverse opal film, leading to the reversible and stable shift of the reflection peak to longer wavelength more than 15 nm. To improve switching properties, we use copolymers of azobenzene monomer and tolane monomer, which have higher birefringence, as infiltration materials into the voids. The azobenzene‐tolane copolymers are found to show higher birefringence than azobenzene homopolymers by the LP light irradiation at higher temperature. Consequently, the reflection band of the SiO2 inverse opal film infiltrated with the azobenzene‐tolane copolymer can be shifted to longer wavelength region more than 55 nm by the irradiation of LP light. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1981–1990, 2009  相似文献   

6.
Two photosensitive chiral liquid crystalline azobenzene‐containing polymethacrylates having different length of flexible spacer connecting chromophores with backbone were synthesized and their phase behavior and photo‐optical properties were studied. Both polymers consist of lateral methyl substituents in ortho‐position of azobenzene chromophores providing high photosensitivity even in red spectral region as well as high thermal stability of photoinduced Z‐form of azobenzene chromophores. It is shown, that smectic phase (SmA*) formation in films of polymer with longer spacer predetermines its quite unusual spectral response to UV and subsequent visible light actions. The SmA* phase promotes spontaneous homeotropic alignment of azobenzene chromophores in polymer films. UV‐irradiation induces not only E‐Z isomerization but also results in disruption of homeotropic alignment, whereas subsequent visible light action enables to obtain films with the low degree of chromophores orientation. The photo‐orientation phenomena under the action of polarized light of different wavelength on polymer films were studied. The possibility of using red polarized light of moderate intensity for optical photorecording on polymer films is demonstrated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2962–2970  相似文献   

7.
New hydrogenated ring‐opening metathesis polymers with excellent thermal and optical properties were developed. These polymers were prepared by the ring‐opening metathesis polymerization of ester‐substituted tetracyclododecene monomers followed by the hydrogenation of the main‐chain double bond. The degree of hydrogenation was an important factor for the thermal stability of the polymers, and as complete hydrogenation as possible was necessary to obtain a thermally stable polymer. The completely hydrogenated ring‐opening polymer derived from 8‐methyl‐8‐methoxycarbonyl‐substituted monomer has a glass‐transition temperature of 171 °C and a 5% weight‐loss temperature of 446 °C. This polymer has excellent thermal and optical properties because of its bulky and unsymmetrical polycyclic structure in the main chain and is an alternative to glass or other transparent polymers such as poly(methyl methacrylate) and polycarbonate resin. This polymer has also been used in a wide variety of applications, such as optical lenses, optical disks, optical films, and optical fiber. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4661–4668, 2000  相似文献   

8.
In this article, the synthesis of a tris(8‐hydroxyquinoline)aluminum (AlQ3)‐containing poly(arylene ether) (4) is reported. The presence of AlQ3 pendants in polymer 4 is confirmed by NMR, ultraviolet–visible, photoluminescence, and gel permeation chromatography analyses. This is the first report of the attachment of AlQ3 complexes as side chains to a polymer. Polymer 4 has a glass‐transition temperature of 217.8 °C and is thermally stable with a 5% weight‐loss temperature greater than 500 °C under nitrogen, as determined by differential scanning calorimetry and thermogravimetric analyses, respectively. Polymer 4 is quite soluble in common organic solvents, such as tetrahydrofuran, N,N‐dimethylacetamide, and CHCl3. A composite that is 80 wt % polymer 4 and 20 wt % AlQ3 forms a transparent and tough film when cast from its chloroform solution. The application of this AlQ3‐containing polymer in light‐emitting diodes is under investigation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2887–2892, 2000  相似文献   

9.
Three main chain thermotropic liquid crystalline (LC) azobenzene polymers were synthesized using the azobenzene twin molecule (P4P) having the structure Phenylazobenzene‐tetraethyleneglycol‐Phenylazobenzene as the AA monomer and diols like diethylene glycol, tetraethylene glycol (TEG), and hexaethylene glycol as the BB comonomer. Terminal ? C(O)OMe units on P4P facilitated transesterification with diols to form polyesters. All polymers exhibited stable smectic mesophases. One of the polymers, Poly(P4PTEG) was chosen to prepare composite polymer electrolytes with LiCF3SO3 and ionic conductivity was measured by ac impedance spectroscopy. The polymer/0.3 Li salt complex exhibited a maximum ionic conductivity in the range of 10?5 S cm?1 at room temperature (25 °C), which increased to 10?4 S cm?1 above 65 °C. The temperature dependence of ionic conductivity was compared with the phase transitions occurring in the sample and it was observed that the glass transition had a higher influence on the ionic conductivity compared to the ordered LC phase. Reversible ionic conductivity switching was observed upon irradiation of the polymer/0.3 Li salt complex with alternate UV and visible irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 629–641  相似文献   

10.
New photochromic polymethacrylates with different spacer length having azobenzene side groups and lateral methyl substituents were synthesized. The phase behavior of polymethacrylates and their photooptical properties were studied and compared with unsubstituted analogues. It is shown that an introduction of lateral methyl substituents results in almost complete suppression of liquid crystalline (LC) phase formation and strong decrease of photoinduced dichroism values. It is found that rates of the photoinduced E‐Z isomerization and back thermal Z‐E isomerization are almost independent on spacer lengths. Due to the presence of lateral substituents, the photoinduced azobenzene Z‐form shows remarkable long lifetime, and back thermal conversion at room temperature takes more than 10 days. Specific peculiarities of the photoorientation process in polymer films under the polarized UV and visible light action were studied and their mechanism is suggested. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1337–1342  相似文献   

11.
A new methacrylate containing a 2,6‐diacylaminopyridine (DAP) group was synthesized and polymerized via RAFT polymerization to prepare homopolymethacrylates (PDAP) and diblock copolymers combined with a poly(methyl methacrylate) block (PMMA‐b‐PDAP). These polymers can be easily complexed with azobenzene chromophores having thymine (tAZO) or carboxylic groups with a dendritic structure (dAZO), which can form either three or two hydrogen bonds with the DAP groups, respectively. The supramolecular polymers were characterized by spectroscopic techniques, optical microscopy, TGA, and DSC. The supramolecular polymers and block copolymers with dAZO exhibited mesomorphic properties meanwhile with tAZO are amorphous materials. The response of the supramolecular polymers to irradiation with linearly polarized light was also investigated founding that stable optical anisotropy can be photoinduced in all the materials although higher values of birefringence and dichroism were obtained in polymers containing the dendrimeric chromophore dAZO. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3173–3184  相似文献   

12.
New amphiphilic photochromic methacrylates with the structures of 4‐[ω‐methacryloyloxyoligo(ethyleneglycol)]‐4′‐cyanoazobenzene (MEn) and 4‐methacryloyloxy‐4′‐{2‐cyano‐3‐oxy‐3‐[ω‐methoxyoligo(ethyleneglycol)]prop‐1‐en‐1‐yl}azobenzene (MEnMe) and oligo(oxyethylene) segments of different lengths were synthesized. These methacrylates were characterized by the presence of permanent dipole azobenzene chromophores and hydrophilic oligo (oxyethylene) segments. The methacrylates were obtained with six‐step and five‐step synthetic sequences, respectively, in 12–47% overall yields. The radical polymerization of the MEn monomers afforded a 50% yield of the corresponding polymers as orange solids with a number‐average molecular weight of about 40 kD. No solid polymer was obtained from the radical polymerization of the MEnME compounds. Two‐dimensional NMR spectra allowed the unequivocal assignment of the NMR signals and demonstrated a significant contribution of internal charge transfer to the electronic distribution of the azobenzene chromophore. Relaxation time measurements confirmed that the flexible polyether segment effectively decoupled photochromic groups from the polymer backbone. Optical microscopy, differential scanning calorimetry analysis, and X‐ray diffraction data demonstrated the presence of interdigitated smectic mesophases. The stability of mesophases showed a significant dependence on the chemical structure of the analyzed compounds. The glass‐transition temperatures of the polymers were rather low because of the plasticizing effect of the spacers. The monomers and polymers were used for the deposition of Langmuir films and Langmuir–Blodgett–Kuhn multilayers. A strong influence of the macromolecular structure on the film properties was observed. The photoresponsive properties of monomers and polymers were investigated with irradiation at different wavelengths. Isomerization kinetics were independent of both molecular weight and spacer length. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2957–2977, 2001  相似文献   

13.
We report a poly(ethylene glycol)‐poly(L ‐alanine)‐azobenzene‐poly(L ‐alanine)‐poly(ethylene glycol) (PEG‐PA‐Z‐PA‐PEG) as a temperature and light sensitive polymer. The poly(ethylene glycol)‐poly(L ‐alanine) diblock copolymers with a flexible‐rigid block structure were coupled by an azobenzene group that undergoes a reversible configurational change between “trans” and “cis” upon exposure to UV and vis light. The single azobenzene molecule embedded in the middle of a block copolymer with a flexible (shell)‐rigid (core) structure significantly affected molecular assembly, micelle size, polypeptide secondary structure, and sol‐to‐gel transition temperature of the polymer aqueous solution, depending on its exposure to UV or vis light. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
We report the synthesis and investigation of a new type of photoresponsive block copolymers (BCPs). They were designed to comprise two water‐soluble polymers containing two different photoisomerizable moieties (either azobenzene and spiropyran or two different azobenzenes), with the two constituting blocks that, when separated, exhibit a lower critical solution temperature (LCST) in water and can shift their LCST in opposite directions upon photoisomerization (decrease of LCST for one polymer and increase for the other). A variety of such doubly photoresponsive BCPs were synthesized using either azobenzene‐ or spiropyran‐containing poly(N,N‐dimethylacrylamide) (PDMA), poly(N‐isopropylacrylamide) (PNIPAM) and poly[methoxydi(ethylene glycol) methacrylate] (PDEGMMA). Their thermal phase transition behaviors in aqueous solution before and after simultaneous photoreactions on the two blocks were investigated in comparison with their constituting blocks, by means of solution transmittance (turbidity) and variable‐temperature 1H NMR measurements. The results show that BCPs displayed a single LCST whose shift upon two photoisomerizations appeared to be determined by the competing and opposing photoinduced effects on the two blocks. Moreover, optically controlling the relative photoisomerization degrees of trans azobenzene‐to‐cis azobenzene and spiropyran‐to‐merocyanine could be used to tune the LCST of BCP solution. This study demonstrates the potential of exploring a more complex photoreaction scheme to optically control the solution properties of water‐soluble thermosensitive BCPs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4055–4066, 2010  相似文献   

15.
Long‐term stable holographic volume gratings in azobenzene‐containing films have potential applications as forgery‐proof security features or in holographic data storage. However, azobenzene‐based polymer systems often lack sufficiently high writing speeds. Here, an approach to improve the holographic writing performance of photo‐orientable azobenzene‐containing polymers by blending with azobenzene molecular glasses is presented. The molecular glass enhances the photo‐plastification effect and, consequently, the writing speed. This concept of improving the holographic performance of photo‐orientable azobenzene polymers with azobenzene molecular glasses is demonstrated with a homopolymer and two block copolymers. In the azobenzene homopolymer, an addition of 10 wt % of the molecular glass leads to a doubling of the writing speed. Simultaneously, the long‐term stability of inscribed gratings is maintained. In case of the block copolymers, the molecular glass is present in the polystyrene matrix and accumulates in the azobenzene minority phase. Adding 5–10 wt % of molecular glass improves the writing speed of the azobenzene block copolymer by a factor of 3–4. An addition of 15 wt % of molecular glass to the block copolymer containing azobenzene and nonphotoactive mesogenic side groups reduces the writing time by a factor of 15 and the long‐term stability of the gratings is retained. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2110–2117  相似文献   

16.
A series of polyesters with π‐conjugated donor–acceptor segments was synthesized by the condensation of azobenzene‐4,4′‐dicarbonylchloride with 1,4:3,6‐dianhydro‐D‐sorbitol ([α] = + 42.5°) and biphenolic chromophores, bis(4‐hydroxyphenylazo)‐2,2′‐dinitrodiphenylmethane and bis(4‐hydroxyphenylazo)‐2,2′‐dinitrodiphenylsulfone. The polymers were characterized by spectral methods (IR, ultraviolet–visible, and NMR), thermal methods (thermogravimetry and differential scanning calorimetry), wide‐angle X‐ray scattering, and polarimetry. The polymers containing isosorbide units were optically active and crystalline. They exhibited glass‐transition temperature values between 100 and 160 °C and were stable up to 400 °C. The second‐harmonic generation (SHG) efficiency of the polymers was experimentally verified by a powder‐reflection technique with 2‐methyl‐4‐nitroaniline as a reference. The SHG efficiencies of the polymers were compared to those of the chromophores and explained as a function of the percentage of chiral composition. The hyperpolarizability β values were also determined by a two‐level model solvatochromic method and computational methods. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2868–2877, 2002  相似文献   

17.
The crystallization of isotactic poly(4‐methylpentene‐1) in its stable tetragonal crystal modification based on the 72 helix conformation was achieved on three different low molecular weight organic substrates and on polytetrafluoroethylene. The contact face was always the (100) face, although the details of the epitaxial relationships generated one, two, or even three chain axis orientations in the polymer epitaxial overgrowth. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3088–3097, 2000  相似文献   

18.
A series of new strictly alternating aromatic poly(ester‐imide)s having inherent viscosities of 0.20–0.98 dL/g was synthesized by the diphenylchlorophosphate (DPCP) activated direct polycondensation of the preformed imide ring‐containing diacid, 3,3‐bis[4‐(trimellitimidophenoxy)phenyl]phthalide (I), with various bisphenols in a medium consisting of pyridine and lithium chloride. The diimide–diacid I was prepared from the condensation of 3,3‐bis[4‐(4‐aminophenoxy)phenyl]phthalide and trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents such as N‐methyl‐2‐pyrrolidone (NMP) and N,N‐dimethylacetamide (DMAc). Transparent and flexible films of these polymers could be cast from their DMAc solutions. The cast films had tensile strengths ranging 66–105 MPa, elongations at break from 7–10%, and initial moduli from 1.9–2.4 GPa. The glass‐transition temperatures of these polymers were recorded between 208–275 °C. All polymers showed no significant weight loss below 400 °C in the air or in nitrogen, and the decomposition temperatures at 10% weight loss all occurred above 460 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1090–1099, 2000  相似文献   

19.
The synthesis of a new A2X‐type difluoride monomer, N‐2‐pyridyl‐4′,4″‐bis‐(4‐fluorobenzenesulfonyl)‐o‐terphenyl‐3,6‐dimethyl‐4,5‐dicarboxylic imide ( 3 ), is described. The monomer 3 was incorporated into a series of copoly(aryl ether sulfone)s by polymerization of 4,4′‐isopropylidenediphenol and 4,4′‐difluorophenylsulfone. The incorporation of monomer 3 had an observable effect on both the glass‐transition temperature of poly(aryl ether sulfone)s and the tendency for macrocyclic oligomers to form during polymerization. Replacement of the pyridyl imide group via a transimidization reaction with propargyl amine proceeded quantitatively and without polymer degradation. The acetylene containing copoly(aryl ether sulfone) could be crosslinked by simple thermal treatment, resulting in an increase in the glass‐transition temperature and solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 9–17, 2000  相似文献   

20.
An ω‐amino carboxylic acid monomer that contained a nonlinear optical (NLO) chromophore was prepared by a convergent synthesis. Strategies for selective protection/deprotection of the amino and carboxylic acid functionalities were developed. The protected monomer, 4‐[N‐(4‐benzyloxycarbonyl)butyl‐N‐methylamino]‐4′‐[2″,5″‐bis(decyloxy)‐4″‐(phthalimidomethyl)benzylsulfonyl]azobenzene, could be deprotected selectively or sequentially to give HOOC‐monomer‐N‐phthaloyl, benzyl‐OOC‐monomer‐NH2, or HOOC‐monomer‐NH2. Sequential synthesis was performed to yield main‐chain NLO dimers and tetramers. This was accomplished by selective deprotection and dicyclohexylcarbodiimide coupling. The HOOC‐monomer‐NH2 was polymerized by treatment with diphenylphosphoryl azide to give a main‐chain NLO polyamide. The monomer, dimer, tetramer, and polymer NLO materials were characterized by 1H, 13C, IR, and UV–visible spectroscopy as well as by gel permeation chromatography, differential scanning calorimetry, and elemental analysis. The NLO properties of these materials were measured. Thin films of the oligomers and polymer were prepared by spin casting on indium‐tin oxide coated glass. The second‐order NLO properties of the oligomers and polymer thin films were studied by in situ corona poling/second‐harmonic generation and attenuated total reflection methods. The optimal poling temperatures were significantly lower than the melting temperatures or glass‐transition temperatures of the oligomers and polymer. The poling efficiency increased in the following order: monomer, oligomers, and polymer. An electro‐optic coefficient of 4 pm/V at 1.06 μm was obtained for the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 546–559, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号