首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixed-ligand Complexes of Technetium. XV. The Reaction of [TcNCl2(Me2PhP)3] with Dialkyldithiocarbamates and N,N-Dialkylthio-carbamoylbenzamidines [TcN(Cl)(Me2PhP)2(Et2dtc)], [TcN(Me2PhP)(Et2dtc)2], and [TcN(Et2dtc)2] can be prepared by stepwise ligand exchange reactions starting from dichlorotris(dimethylphenylphosphine)nitridotechnetium(V), [TcNCl2(Me2PhP)3], and diethyldithiocarbamate. In contrast to this, only one intermediate, [TcN(Cl)(Me2PhP)2(HEt2tcb)], could be isolated during the reaction with N,N-Diethlthiocarbamoylbenzamidine, which yields the bis chelate [TcN(HEt2tcb)2]. [TcN(Me2PhP)(Et2dtc)2] crystallizes in the monoclinic space group P21/c; a = 17.369(5) Å, b = 15.024(1) Å, c = 9.906(3) Å, β = 76.47(1)º, Z = 4. The phosphine is coordinated equatorially. The multiply bonded nitrogen ligand (Tc? N(1) 1.624(3) Å) strongly labilizes the trans positioned donor atom (distance Tc? S(4) 2.826(1) Å). [TcN(HEt2tcb)2] crystallizes in the triclinic space group P1 with a = 9.749(4) Å, b = 11.264(4) Å, c = 12.359(4) Å, α = 75.34(2)º, β = 79.69(2)º, γ = 87.55(2)º, Z = 2. The metal is five-coordinate with the nitrido donor atom occupying the apex of a square pyramid. It's basal plane is formed by the cis-coordinated chelate ligands. The technetium is situated over the basal plane by about 0.6 Å. The Tc?N distane was found to be 1.610(5) Å.  相似文献   

2.
Mixed-ligand Complexes of Rhenium. IX. Reactions on the Nitrido Ligand of [ReN(Me2PhP)(Et2dtc)2]. Synthesis, Characterization, and Structures of [Re(NBCl3)(Me2PhP)(Et2dtc)2], [Re(NGaCl3)(Me2PhP)(Et2dtc)2], and [Re(NS)Cl(Me2PhP)2(Et2dtc)] BCl3, GaCl3 and S2Cl2 react with the well-known [ReN(Me2PhP)(Et2dtc)2] by attack of the nucleophilic nitrido ligand. Final products of these reactions are [Re(NBCl3)-(Me2PhP)(Et2dtc)2], [Re(NGaCl3)(Me2PhP)(Et2dtc)2], and [Re(NS)Cl(Me2PhP)2Et2dtc)] which have been studied by mass spectrometry, IR spectroscopy and X-ray diffraction. [Re(NBCl3)(Me2PhP)(Et2dtc)2] crystallizes in the triclinic space group P1 , Z = 2, a = 8.151(6), b = 9.935(8), c = 18.67(1) Å; α = 94.42(4), β = 97.09(1), γ = 101.35(4)°. The coordination geometry is a distorted octahedron. The equatorial coordination sphere is occupied by one phosphorus and three sulphur atoms. The fourth sulphur atom is in trans position to the Re?N? B moiety. The almost linear Re?N? B unit has an Re?N? B angle of 170.5(3)° with a Re? N bond length of 1.704(3) Å. The analogous [Re(NGaCl3)(Me2PhP)(Et2dtc)2] crystallizes in P21/c with a = 8.138(3), b = 18.279(2), c = 19.880(6) Å; β = 99.81(2)°; Z = 4. Rhenium has a distorted octahedral environment. The Re? N? Ga bond is slightly bent with an angle of 154.5(4)° and a Re? N bond length of 1.695(6) Å. [Re(NS)Cl(Me2PhP)2(Et2dtc)] crystallizes in the triclinic space group P1 , Z = 4, a = 9.514(2); b = 16.266(5); c = 18.388(3) Å; α = 88.75(2), β = 76.59(2), γ = 85.50(2)° with two crystallographically independent molecules in the asymmetric unit. Rhenium has a distorted octahedral environment with the chloro ligand in trans position to the almost linear thionitrosyl group. The Re?N bond lengths are 1.795(6) and 1.72(1) Å, respectively, and the N?S distances are 1.55(1) and 1.59(1) Å, respectively.  相似文献   

3.
New Trinuclear Rhenium Complexes with Bridging Nitrido Ligands Trinuclear complexes with bridging nitrido ligands between the rhenium atoms are formed when [ReN(Et2dtc)2 · (Me2PhP)] (Et2dtc = N,N‐diethyldithiocarbamate) reacts with TlCl or Pr(O3SCF3)3. [Cl(Me2PhP)2(Et2dtc)Re≡N–Re(N) · Cl2(Me2PhP)–N≡Re(Et2dtc)(Me2PhP)2Cl] and [(Et2dtc)2 · (Me2PhP)Re≡N–Re(N)(Et2dtc)(Me2PhP)–N≡Re(Me2PhP) · (Et2dtc)2]+ contain two almost linear, asymmetric nitrido bridges. Additional, terminal nitrido ligands are located at the middle rhenium atoms.  相似文献   

4.
Mixed-Ligand Complexes of Rhenium IV. The Reaction of [ReNCl2(Me2PhP)3] with Dithiocarbamates. X-Ray Crystal Structures of trans-Chloro-dimethyldithiocarbamato-bis(dimethylphenylphosphine) nitridorhenium(V), [ReN(Cl)(Me2PhP)2(Me2dtc)], and Bis(diethyldithiocarbamato)(dimethylphenylphosphine)nitridorhenium(V), [ReN(Cl)(Me2PhP)(Et2dtc)2] [ReNCl2(Me2PhP)3] reacts with dialkyldithiocarbamates, R2dtc?, under a stepwise ligand exchange. Final products of these reactions are the well-known [ReN(R2dtc)2] bischelates. Intermediatelly, however, complexes of the general formulae [ReN(Cl)(Me2PhP)2(R2dtc)] and [ReN(Me2PhP)(R2dtc)2] can be isolated. Representatives have been structurally characterized. [ReN(Cl)(Me2PhP)2(Me2dtc)] crystallizes monoclinic in the space group P21/c, Z = 4. The dimensions of the unit cell are a = 13.071(3); b = 11.622(1); c = 15.667(3) Å; β = 97.09(1)°. The rhenium atom has a distorted octahedral environment; the Re≡N bond length is 1.71(1) Å. The Re? Cl bond distance is markedly lengthened (2.665(2) Å) as a consequence of the strong trans labilizing influence of the coordinated nitrido ligand. [ReN(Me2PhP)(Et2dtc)2] crystallizes monoclinic in the space group P21/c, Z = 4, a = 17.262(3); b = 14.915(2); c = 9.888(2); β = 76.35(8)°. The equatorial coordination sphere is occupied by one phosphorus atom and three sulphur atoms. One of the dithiocarbamate ligands is coordinated bidentately; the second one with two distinct Re? S bond lengths. The Re? S(4) distance is 2.7983(2) Å which can be discussed as a weak interaction with the metal.  相似文献   

5.
[{ReN(Me2PhP)(Et2dtc)Cl}2{ReN(Et2dtc)2}2{SbCl3}2] — a Novel Tetranuclear Rhenium Complex with Asymmetric Nitrido Bridges The reaction of [ReN(Et2dtc)2(Me22hP)] (Me2PhP = dimethylphenylphosphine, Et2dtc = diethyldithiocarbamate) with SbCl3 in dichloromethane results in the formation of [{ReN(Me2PhP)(Et22tc)Cl}2{ReN(Et2dtc)2}2{SbCl3}2]. A {Re≡N‐}4 ring with asymmetric nitrido bridges is stabilised by the co‐ordination of SbCl3 onto the chloro ligands and sulphur atoms of the dithiocarbamates. The compound decomposes upon heating in acetonitrile and the fragments of the tetrameric complex re‐arrange to form [ReN‐(Me2PhP)(Et2dtc)Cl]4 and [ReN(Et2dtc)2]. The multinuclear rhenium compounds have been studied by X‐ray crystallography. The 8‐membered {Re≡N‐}4 ring system in [{ReN(Me2PhP)(Et2dtc)Cl}22ReN(Et2dtc)2}2{SbCl3}2] is almost planar, while that of [ReN(Me2PhP)(Et2dtc)Cl]4 is clearly V‐shaped when viewed down either diagonal Re…Re axis. A dihedral angle of 47.88(2)° has been found between the contributing planes.  相似文献   

6.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

7.
Halomercurates: Syntheses and Crystal Structures of [Cu(en)2][Hg2Cl6], [Cu(en)2][Hg2Br6], and [Cu(en)2][HgBr4] Crystals of [Cu(en)2][Hg2Cl6] ( 1 ) have been obtained by layering a solution of Hg(NO3)2 and NaCl with a solution of [Cu(en)2]SO4. An analogous procedure, using NaBr instead of NaCl, gave crystals of [Cu(en)2][HgBr4] ( 3 ). Crystals of [Cu(en)2][Hg2Br6] ( 2 ) were obtained by gel crystallization using the same starting materials as for 3 . The complexes show very low solubility. The dinuclear anions of 1 consist of two nearly planar HgCl3 units related by a center of symmetry. In 2 infinite anionic chains are present, made up of parallel HgBr3 units. These units are packed in such a way as to produce a trigonal bipyramidal configuration around the Hg atoms. 3 contains mononuclear deformed tetrahedral [HgBr4]2– anions. In all three complexes the packing of the ions is such that halogen atoms of halomercurate anions complete a tetragonal bipyramidal coordination at Cu. The resulting Cu–Halogen distances are 2.924 Å for 1 , 3.036 Å for 2 and 3.085 and 3.119 Å for 3 . 1 : Space group P 1, Z = 1, lattice constants at 20 °C: a = 7.000(2), b = 7.526(2), c = 8.239(2) Å; α = 88.39(2), β = 86.06(2), γ = 86.10(3)°; R1 = 0.040. 2 : Space group P21/c, Z = 2, lattice constants at –50 °C: a = 7.185(1), b = 16.338(2), c = 7.814(1) Å; β = 94.88(2)°; R1 = 0.033. 3 : Space group P21/n, Z = 4, lattice constants at 20 °C: a = 8.055(3), b = 13.101(3), c = 13.814(3) Å; β = 91.24(3)°; R1 = 0.092.  相似文献   

8.
Synthesis and Crystal Structures of the Complexes trans ‐[CoIII(py)4F2][H2F3] and [Pd(py)4]F2 · 1.5 HF · 2 H2O The cobalt complex trans‐[Co(III)(py)4F2][H2F3] ( 1 ) has been prepared by electrochemical oxidation of CoF2 in a pyridine/HF mixture and the palladium complex [Pd(py)4]F2 · 1.5 HF · 2 H2O ( 2 ) has been obtained via halogen exchange between Pd(py)2Cl2 and AgF2 in pyridine. 1 and 2 crystallize in the space group C2/c with a = 27.928(14), b = 9.019(3), c = 18.335(8) Å, β = 113.41(3)° for 1 and a = 28.183(9), b = 9.399(3), c = 17.397(6) Å, β = 104.66(3)° for 2 , respectively. Concerning the shape and location of the M(py)4 fragments 1 and 2 are isostructural. The metal atoms occupy special positions in their unit cells with the result that four complex atoms have C2 symmetry and four complex cations have Ci symmetry giving a total of Z = 8. In 1 two F ions complete an octahedral coordination around the Co atoms (Co–F 1.820(2) to 1.834(3) Å). In 2 the shortest Pd–F distance is 3.031(2) Å. This precludes the existence of Pd–F bonds. In 1 one can identify H2F3 groups. In 2 there are larger aggregates, consisting of F, HF, and H2O subunits, connected by H‐bridges. In spite of these differences, both complexes belong to the same type of structure, which may be of a common type Mx+(py)4Fx · y HF · z H2O.  相似文献   

9.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

10.
Synthesis, EPR and X-Ray Structure of mer-Trichloro(2,2′-bipyridine)nitridotechnetium(VI) — a new Technetium(VI) Nitrido Complex mer-Trichloro(2,2′-bipyridine)nitridotechnetium(VI) has been prepared by the reaction of (NBu4)[TcNCl4] with 2,2′-bipyridine in acetonitrile, whereas the same procedure gives in methanol the technetium(V) cation [TcNCl(bipy)2]+. The EPR spectrum of [TcNCl3(bipy)] suggests a meridional coordination of the three chloro ligands. [TcNCl3(bipy)] crystallizes monoclinic in the space group P21/n; a = 8.572(1), b = 15.462(1), c = 10.110(1) Å, β = 104.21(1)°, Z = 4. The R value converged at 0.034 on the basis of 3 040 reflections. The technetium atom is distorted octahedrally coordinated with the chloro ligands meridionally cis with respect to the nitrido nitrogen. The Tc? N(1) bond length is 1.669(4) Å, and the Tc? N(3) bond (2.371(4) Å) is significantly lengthened due to the structural trans labilizing influence of the “N3?” ligand.  相似文献   

11.
Nitrido bridges between technetium and boron were formed during reactions of [TcN(PMe2Ph)(Et2dtc)2] (Et2dtc? = diethyldithiocarbamate) and BH3 or BPhCl2 at low temperatures. X‐Ray structure determinations show that the products contain almost linear Tc–N–B bonds with Tc–N distances which are only slightly lengthened with respect to the triple bonds in the precursor molecule. However, a significant lengthening of the Tc–S bond trans to the nitrido ligand is detected by the decrease of the structural trans influence of “N3?”N. The compounds are instable and decompose at room temperature under cleavage of the N–B bonds. A reaction between [TcNCl2(PPh3)2] and BCl3 does not yield a product with a nitrido bridge. Prolonged heating in dichloromethane results in decomposition of the technetium complex and the formation of (HPPh3)2[TcCl6]. Hydrogen bonds are established between the complex anion and each two counter ions.  相似文献   

12.
Syntheses and Structures of (Et4N)2[Re(CO)3(NCS)3] and (Et4N)[Re(CO)2Br4] Rhenium(I) and rhenium(III) carbonyl complexes can easily be prepared by ligand exchange reactions starting from (Et4N)2[Re(CO)3Br3]. Using nonoxidizing reagents the facial ReI(CO)3 unit remains and only the bromo ligands are exchanged. Following this procedure, (Et4N)2[Re(CO)3(NCS)3] can be obtained in high yield and purity using trimethylsilylisothiocyanate. The compound crystallizes in the monoclinic space group P21/n, a = 18.442(5), b = 17.724(3), c = 18.668(5) Å, β = 92.54(1)°, Z = 8. The NCS? ligands are coordinated via nitrogen. The reaction of [Re(CO)3Br3]2? with Br2 yields the rhenium(III) anion [Re(CO)2Br4]?. The tetraethylammonium salt of this complex crystallizes in the noncentrosymmetric, orthorhombic space group Cmc21, a = 8.311(1), b = 25.480(6), c = 8.624(1) Å, Z = 4. The carbonyl ligands are positioned in a cis arrangement. Their strong trans influence causes a lengthening of the Re? Br bond distances by at least 0.05 Å.  相似文献   

13.
MoO42? is reduced by diethyldithiocarbamate (Et2dtc?) on prolonged digestion in aqueous medium whereby the complex [Mo2VO2S2(Et2dtc)2] is formed. The central moiety Mo2O2S22+ has a high formation tendency. When [Mo2V(S2)6]2? is refluxed with Et2dtc? in ethanol, [Mo2VS (Et2dtc)2] is formed, the X-ray crystal structure of which has been determined (space group P212121, a = 10.550(2) Å, b = 13.820(5) Å, c = 14.723(12) Å, dc = 1.90 g · cm3?, Z = 4). The Mo? Mo distance of the diamagnetic compound is 2.817(2) Å and the average Mo=St distance 2.099(4) Å.  相似文献   

14.
New Dimeric Gold Selenolates: Preparation and Characterization of [(n-C4H9)4N]2[AuSSeC ? C(CN)2]2 and [(n-C4H9)4N]2[AuSe2C ? C(CN)2]2 The preparation and structural characterization of the dimeric AuI complexes of 1,1-dicyanoethene-2,2-thioseleonlate (i-mnts) and 1,1-dicyanoethene-2,2-diselenolate (i-mns), isolated as Bu4N salts, are described. They are isotype (monoclinic, space group P21/c, Z = 2) with lattice parameters: (Bu4N)2[Au(i-mnts)]2; a = 14.078(3) Å, b = 8.912(3) Å, c = 20.142(4) Å, β = 106.32(5)°; (Bu4N)2[Au(i-mns)]2; a = 13.998(3) Å, b = 9.125(3) Å, c = 20.039(2) Å, β = 105.12(5)°. Ab initio Hartree-Fock calculations based on the experimentally determined structure yield a positive value of the Au? Au bonding order suggesting weak bonding interactions between the d10 metal centres.  相似文献   

15.
The reaction of dibenzenediselenide, (SePh)2, with mercury in refluxing xylene gives bis(benzeneselenolato)mercury(II), [Hg(SePh)2], in a good yield. (nBu4N)[Hg(SePh)3] is obtained by the reaction of [Hg(SePh)2] with a solution of [SePh] and (nBu4N)Br in ethanol. The solid state structures of both compounds have been determined by X-ray diffraction. The mercury atom in [Hg(SePh)2] (space group C2, a = 7.428(2), b = 5.670(1), c = 14.796(4) Å, β = 103.60(1)°) is linearly co-ordinated by two selenium atoms (Hg–Se = 2.471(2) Å, Se–Hg–Se = 178.0(3)°). Additional weak interactions between the metal and selenium atoms of neighbouring molecules (Hg…Se = 3.4–3.6 Å) associate the [Hg(SePh)2] units to layers. The crystal structure of (nBu4N)[Hg(SePh)3] (space group P21/c, a = 9.741(1), b = 17.334(1), c = 21.785(1) Å, β = 95.27(5)°) consists of discrete complex anions and (nBu4N)+ counter ions. The coordination geometry of mercury is distorted trigonal-planar with Hg–Se distances ranging between 2.5 and 2.6 Å.  相似文献   

16.
Four new heterobimetallic complexes [CuL1][MnCl4] (1), [CuL2][MnCl4] (2), [NiL1][MnCl4] (3), [NiL2][MnCl4] (4) (L1?=?4,6,6-trimethyl-1,9-diamino-3,7-di-aza-nona-3-ene; L2?=?1,15-dihydroxy-7,9,9-trimethyl-3,6,10,13-tetra-aza-pentadeca-6-ene) have been prepared from elemental metals, ethylenediamine dihydrochloride or its N-(2-hydroxyethyl) derivative and acetone by the template condensation reaction. All complexes have been characterized by elemental analysis, IR and UV-Visible spectroscopy. The structures of 2 and 3 have been determined by X-ray crystallography (2: Orthorhombic, Pna2 1, a?=?20.136(4), b?=?11.185(2), c?=?10.251(2)Å, Z?=?4; 3: Orthorhombic, Pca2 1, a?=?14.335(2), b?=?11.405(2), c?=?11.154(2)Å, Z?=?4 ). Both crystals consist of alternating complex cations [ML]2+ and anions [MnCl4]2? linked together by N–H···Cl–Mn and O–H···Cl–Mn hydrogen bonds forming 2D corrugated sheets in (2) and 1D helical chains in (3). Complex 2 represents the first single crystal structure elucidation of the complex containing L2.  相似文献   

17.
Preparation, Spectroscopic Characterization, and Crystal Structures of [(C5H5N)2CH2][PtCl5(SCN)] and cis -[(C5H5N)2CH2][PtCl4(SCN)2] By treatment of [PtCl6]2– with SCN in aqueous solution a mixture of chlorothiocyanatoplatinates(IV) is formed, from which [PtCl5(SCN)]2– and cis-[PtCl4(SCN)2]2– have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X-Ray structure determinations on single crystals of [(C5H5N)2CH2][PtCl5(SCN)] ( 1 ) (tetragonal, space group P 43, a = 7.687(1), c = 29.698(4), Z = 4) and cis-[(C5H5N)2CH2][PtCl4(SCN)2] ( 2 ) (monoclinic, space group P 21/n, a = 11.2467(9), b = 15.0445(10), c = 11.3179(13), β = 92.840(9)°, Z = 4) show, that the thiocyanate groups are coordinated via S atoms with average Pt–S distances of 2.339 Å and Pt–S–C angles of 104.7° up to 107.1°. Using the molecular parameters of the X-ray determinations the low temperature (10 K) IR and Raman spectra have been assigned by normal coordinate analyses. The valence force constants of the S–Pt–Cl˙ axes are fd(PtS) = 1.81 ( 1 ) and 1.87 ( 2 ), fd(PtCl × ) = 1.77 ( 1 ) and 1.81 ( 2 ), of the Cl–Pt–Cl axes are fd(PtCl) = 1.93 ( 1 ) and 1.90 mdyn/Å ( 2 ). The 195Pt NMR spectra from dichlormethane solutions exhibit each one sharp signal at 3975.6 ( 1 ) and 3231.6 ppm ( 2 ), respectively.  相似文献   

18.
Mixed-Ligand Complexes of Technetiums. XVI Synthesis and Structure of (1,2-Dicyanoethene-1,2-dithiolato)bis(dimethylphenylphosphine)nitridotechnetium(V), [TcN(Me2PhP)2(mnt)] [TcN(Me2PhP)2(mnt)] is formed from [TcNCl2(Me2PhP)3] and one equivalent of the sodium salt of 1,2-dicyanoethene-1,2-dithiolate (Na2mnt). The same reaction yields [TcN(mnt)2]2?, when a large excess of the ligand and long reaction periods are applied. The complex anion can be isolated as tetraalkylammonium or tetraphenylarsonium salts. [TcN(Me2PhP)2(mnt)] crystallizes in the triclinic space group P1 (a = 10.000(5), b = 14.182(6), c = 17.77(1) Å, α = 98.77(3), β = 103.77(3), γ = 104.55(3)°; Z = 4). The coordination sphere is a square pyramid with the sulfur and phosphorus atoms as basal plane. Tc is situated out of this plane by 0.56 Å towards the nitrido ligand.  相似文献   

19.
A series of mixed-ligand copper(II) chelates containing the anion of 2-hydroxyaryloxime(oxime) and N,N-disubstituted dithiocarbamate(dtc), [Cu(dtc)(oxime)], was prepared and characterised. The spectra (IR, ESR, electronic excitation) indicate that the CuNOS2 chromophore attains square planar geometry. The ESR observables suggest appreciable covalency. In the case of [Cu(Et2dtc)(oxime)] chelates, however, the observed data suggest distortion from square planar arrangement to a square pyramidal, indicative of a possible dimerism. In addition, the structure of the trans-bis[propanone, 1-(2-hydroxyphenyl)-oximato]copper(II), Cu(C9H10NO2)2 was determined by X-ray diffraction (monoclinic, space group P21/n, a = 12.072(7) Å, b = 5.204(2) Å, c = 13.571(6) Å, β = 103.72(1)°, Z = 2). The molecule consists of discrete Cu(ppox)2 monomeric units, where the Cu atom is in the equatorial plane bonded to two nitrogen atoms and two oxygen at distances of 1.949(2) and 1.882(2) Å, respectively.  相似文献   

20.
The neutral technetium(V) phosphoraneimine complex [TcNCl2(Ph2PNH)2] is formed when (Bu4N)[TcOCl4] reacts with Me3SiNPPh3 in dichloromethane. Distances of 2.078(4) and 2.102(4) Å have been found between Tc and the neutral triphenylphosphoraneimine ligands. The Tc‐N‐P angles are 133.7(3) and 134.8(3)°. The terminal nitrido ligand is formed by decomposition of an additional molecule of Me3SiNPPh3. The protons which are used for the protonation of the organic ligands are released during the decomposition of CH2Cl2. The same reaction yields the [TcNCl4] anion when it is performed in acetonitrile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号