首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new strategy relying on the use of a phosphate‐based macromonomer (PAM200) to modify the surface of iron oxide nanoparticles was developed for the synthesis of submicrometer polystyrene (PS) magnetic particles. First, iron oxide nanoparticles were synthesized using the coprecipitation of ferrous and ferric salts in alkaline medium. Besides the classical oleic acid (OA)/octane‐based ferrofluid, styrene‐based ferrofluids were elaborated with either OA or PAM200 as the stabilizer. In all cases, maghemite (γ‐Fe2O3) was clearly identified, with nanoparticles rather spherical in shape but exhibiting broad particle size distribution (PSD). Both OA and PAM200 led to stable maghemite‐based ferrofluids showing superparamagnetic properties. Further use of these ferrofluids in styrene miniemulsion polymerization resulted in inhomogeneous distribution of maghemite among and inside the polymer particles with OA‐based ferrofluids, whereas PAM200/styrene‐based ferrofluids led to magnetic particles with homogeneous distribution of maghemite inside PS particles. Broad PSD and small nonmagnetic particles were however observed. The true mechanisms operating in these systems are still to elucidate, but this study validates PAM200 as an efficient compatibilizing agent between hydrophilic maghemite and hydrophobic PS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 327–340, 2008  相似文献   

2.
Magnetic poly(N‐propargylacrylamide) (PPRAAm) microspheres were prepared by the precipitation polymerization of N‐propargylacrylamide (PRAAm) in a toluene/propan‐2‐ol medium in the presence of magnetic nanoparticles (oleic acid‐coated Fe3O4). The effects of several polymerization parameters, including the polarity of the medium, polymerization temperature, the concentration of monomer, and the amount of magnetite (Fe3O4) in the polymerization feed, were examined. The microspheres were characterized in terms of their morphology, size, particle‐size distribution, and iron content using transmission and scanning electron microscopies (TEM and SEM) and atomic absorption spectroscopy (AAS). A medium polarity was identified in which magnetic particles with a narrow size distribution were formed. As expected, oleic acid‐coated Fe3O4 nanoparticles contributed to the stabilization of the polymerized magnetic microspheres. Alkyne groups in magnetic PPRAAm microspheres were detected by infrared spectroscopy. Magnetic PPRAAm microspheres were successfully used as the anchor to enable a “click” reaction with an azido‐end‐functionalized model peptide (radiolabeled azidopentanoyl‐GGGRGDSGGGY(125I)‐NH2) and 4‐azidophenylalanine using a Cu(I)‐catalyzed 1,3‐dipolar azide‐alkyne cycloaddition reaction in water. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

3.
We report on the synthesis of snowman‐like magnetic/nonmagnetic nanocomposite asymmetric particles (SMNAPs) via seeded emulsion polymerization initiated by γ‐ray radiation. In situ formation of magnetite in the presence of the emulsified poly(styrene‐divinylbenzene‐acrylic acid) microspheres affords raspberry‐like magnetic nanocomposite particles, which are used as seeds for further seeded emulsion polymerization induced by γ‐ray radiation. We study the effect of the kind of surfactant, the kind and content of second monomer, and the content of swelling agent on the morphologies of the final nanocomposite particles. It is found that SMNAPs can be fabricated in high yield using 12‐acryloxy‐9‐octadecenoic acid as the surfactant and styrene as the second monomer with the addition of 2‐butanone (a swelling agent). The as‐synthesized SMNAPs may serve as magnetically controllable solid surfactants to stabilize O/W immiscible mixtures, which preferentially orientated at the interface. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Facile strategy was developed for the fabrication of the monodisperse superparamagnetic pH‐sensitive single‐layer chitosan (CS) hollow microspheres with controllable structure. The carboxyl group‐functionalized polystyrene microspheres prepared by soap‐free emulsion polymerization were used as the templates. After the Fe3O4 nanoparticles were in situ formed onto the surface of the templates, the single‐layer CS was self‐assembled and cross‐linked with glutaraldehyde subsequently. Then, the magnetic single‐layer CS hollow microspheres were obtained after the templates were removed. It was found that the feeding ratio of the monomer acrylic acid in the soap‐free emulsion polymerization had played an important role on the particle size and surface carboxyl group content of the templates, which determined the particle size and shell thickness of the magnetic single‐layer CS hollow microspheres in the proposed strategy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
Nonporous hydrogel microspheres 0.1–1.3 μm in diameter were prepared by the dispersion copolymerization of 1‐vinyl‐2‐pyrrolidone and ethylene dimethacrylate as a crosslinking agent. The crosslinking was evidenced by solid state 13C NMR and elemental analysis. The effect of various parameters including selection of solvent (cyclohexane, butyl acetate), initiator (4,4′‐azobis(4‐cyanopentanoic acid), 2,2′‐azobisisobutyronitrile, dibenzoyl peroxide) and stabilizer on the properties of resulting microspheres has been studied. Dynamic light scattering and photographic examination were used for determination of the diameter and polydispersity of microspheres. Increasing concentration of steric stabilizer in the initial polymerization mixture decreased the particle size. The particle size depended on the molecular weight of polystyrene‐block‐hydrogenated polyisoprene stabilizer, but not on the number of PS and polybutadiene blocks in the styrene–butadiene block copolymer stabilizers. Dibenzoyl peroxide used as an initiator resulted in agglomeration of particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 653–663, 2000  相似文献   

6.
Composite polyglycidylmethacrylate [poly(GMA)] spherical microparticles capable of responding to magnetic fields were prepared by dispersion polymerization of GMA in the presence of iron oxides. The polymerization reaction was carried out in aqueous alcoholic media (methanol, ethanol, propan‐1‐ol, and butan‐1‐ol) using poly‐(N‐vinylpyrrolidone) and 2,2′‐azobisisobutyronitrile as a steric stabilizer and initiator, respectively. Quaternary ammonium salt (Aliquat 336) acting as an electrostatic costabilizer favorably affected dispersity. The solubility parameter of the reaction mixture determined the size of the resulting microspheres. In addition to the particle size distribution, the addition of iron oxide to the polymerization medium also caused a shift of the particle size to higher values. The results show that poly(GMA) particles contained up to 25 wt % iron oxide. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3707–3715, 2001  相似文献   

7.
The aim of this study was to develop novel thermally responsive polymer microspheres with magnetic properties. Dispersion and inverse emulsion copolymerization of N‐isopropylacrylamide (NIPAAm) and N,N′‐methylenebisacrylamide (MBAAm) was investigated in the presence of γ‐Fe2O3 nanoparticles. The resulting microspheres were characterized in terms of morphology, size, polydispersity, iron content, and temperature‐dependent swelling using optical microscopy, transmission electron microscopy, scanning electron microscopy, QELS, and AAS. The effects of several variables, such as the concentration of γ‐Fe2O3, MBAAm crosslinking agent, Span 80 surfactant, 2,2′‐azobis(2‐methyloctanenitrile) (AMON) initiator, and polymerization temperature on the properties of the microspheres were studied. Swelling and thermoresponsive behavior of the microspheres containing γ‐Fe2O3 nanoparticles were also investigated. The microspheres contained about 8 wt % of iron. The presence of magnetic nanoparticles and their concentration changes did not have any significant effect on the temperature sensitivity of the composites. The particles gradually shrink into an increasingly collapsed state when the temperature is raised to 40 °C since the increase in temperature weakens the hydration and PNIPAAm chains gradually become more hydrophobic, which leads to the collapse of the particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5884–5898, 2007  相似文献   

8.
Poly(N,N‐diethylacrylamide)‐based microspheres were prepared by ammonium persulfate (APS)‐initiated and poly(vinylpyrrolidone) (PVP)‐stabilized dispersion polymerization. The effects of various polymerization parameters, including concentration of N,N′‐methylenebisacrylamide (MBAAm) crosslinker, monomer, initiator, stabilizer and polymerization temperature on their properties were elucidated. The hydrogel microspheres were described in terms of their size and size distribution and morphological and temperature‐induced swelling properties. While scanning electron microscopy was used to characterize the morphology of the microspheres, the temperature sensitivity of the microspheres was demonstrated by dynamic light scattering. The hydrodynamic particle diameter decreased sharply as the temperature reached a critical temperature ~ 30 °C. A decrease in the particle size was observed with increasing concentration of both the APS initiator and the PVP stabilizer. The microspheres crosslinked with 2–15 wt % of MBAAm had a fairly narrow size distribution. It was found that the higher the content of the crosslinking agent, the lower the swelling ratio. High concentration of the crosslinker gave unstable dispersions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6263–6271, 2008  相似文献   

9.
Human serum albumin magnetic microspheres containing 30% iron oxide particles were synthesized by a heat-stabilization process. The average diameter, the size distribution and the morphology were characterized by scanning electron microscopy, atomic force microscopy and transmission electron microscopy. The distribution of the iron oxide nanoparticles within the microspheres was confirmed by the contrast obtained in the morphology by backscattered electron imaging in scanning electron microscopy. Energy-dispersive X-ray spectroscopy showed the presence of iron in the microspheres. The cabbage like surface structure in some of the microspheres obtained in scanning electron microscopy can be better understood by atomic force microscopy. This peculiar surface structure in the microsphere may be due to the cross-linking in the protein molecule by heat. The amount of iron oxide in the microsphere was analyzed by atomic absorption spectroscopy. The magnetic properties of the particles were measured in a superconducting quantum interference device magnetometer. Received: 12 September 2000 Accepted: 5 February 2001  相似文献   

10.
Multiple and diverse applications have been recently found for miniemulsions and miniemulsion polymerization. In this work, miniemulsion polymerization is presented as a suitable technique for the preparation of high‐solid‐content latices with large particle sizes. Monomer miniemulsions were prepared with a high‐pressure homogenizer, and droplet sizes of 200–700 nm were obtained. Latexes with particle sizes larger than the sizes commonly accepted for miniemulsion polymerization were obtained. With fixed operational conditions of the homogenizer, the type of stabilizer was the key parameter determining the droplet size and the droplet size distribution. The particle size of the latices obtained by miniemulsion polymerization indicated that the particles were mainly formed by droplet nucleation. Latexes obtained by this process have multiple applications, including use as seeds in the polymerization of high‐solid‐content latices. This article shows that potential new applications for miniemulsion polymerization are far from being exhausted. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4222–4227, 2004  相似文献   

11.
Radiopaque microspheres of sizes ranging from 0.2 to 1.4 μm were formed by the dispersion polymerization of the monomer 2‐methacryloyloxyethyl(2,3,5‐triiodobenzoate) in 2‐methoxyethanol. The effects of various polymerization parameters, including the monomer concentration, initiator type and concentration, and stabilizer molecular weight and concentration, on the molecular weight, size, and size distribution of the particles were elucidated. The characterization of these iodinated microspheres was accomplished with routine methods such as Fourier transform infrared, nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, gel permeation chromatography, scanning electron microscopy, Brunauer–Emmett–Teller measurements, and elemental analysis. Because of the presence of iodine atoms in these microspheres, they were expected to possess a radiopaque nature. The radiopacity of these particles dispersed in water and in the dry state was demonstrated with an imaging technique based on X‐ray absorption usually used in hospitals. These novel radiopaque microspheres may be used for different X‐ray imaging needs, such as blood pooling, body organs, embolization, dental compositions, implants, prostheses, and nanocomposites. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3859–3868, 2006  相似文献   

12.
Fine magnetite nanoparticles, both electrostatically stabilized and nonstabilized, were synthesized in situ by precipitation of Fe(II) and Fe(III) salts in alkaline medium. Magnetic poly(glycidyl methacrylate) (PGMA) microspheres with core‐shell structure, where Fe3O4 is the magnetic core and PGMA is the shell, were obtained by dispersion polymerization initiated with 2,2′‐azobisisobutyronitrile (AIBN), 4,4′‐azobis(4‐cyanovaleric acid) (ACVA), or ammonium persulfate (APS) in ethanol containing poly(vinylpyrrolidone) or ethylcellulose stabilizer in the presence of iron oxide ferrofluid. The average microsphere size ranged from 100 nm to 2 μm. The effects of the nature of ferrofluid, polymerization temperature, monomer, initiator, and stabilizer concentration on the PGMA particle size and polydispersity were studied. The particles contained 2–24 wt % of iron. AIBN produced larger microspheres than APS or ACVA. Polymers encapsulating electrostatically stabilized iron oxide particles contained lower amounts of oxirane groups compared with those obtained with untreated ferrofluid. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5827–5837, 2004  相似文献   

13.
Polymeric microspheres have been used in a broad range of applications from chromatographic separation techniques to analysis of air flow over aerodynamic surfaces. The preparation of microspheres from many polymer families has consequently been extensively studied using a variety of synthetic approaches. Although there are a myriad of polymeric microsphere synthesis methods, free‐radical initiated emulsion polymerization is one of the most common techniques. In this work, poly(styrene‐co‐methyl methacrylate) microspheres were synthesized via surfactant‐free emulsion polymerization. The effects of co‐monomer composition and addition time on particle size distribution, particle formation, and particle morphology were investigated. Particles were characterized using dynamic light scattering and scanning electron microscopy to gain further insight into particle size and size distributions. Reaction kinetics were analyzed through consideration of characterization results. A particle formation mechanism for poly(styrene‐co‐methyl methacrylate) microspheres was proposed based on characterization results and known reaction kinetics. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2249–2259  相似文献   

14.
Precipitation polymerization of styrene (St)–divinylbenzene (DVB) has been carried out using acetonitrile/1‐propanol mixture as the reaction media and 2,2′‐azobisisobutyronitrile (AIBN) as initiator. Monodisperse micron‐sized poly(St‐co‐DVB) microspheres with clean and smooth surface were synthesized in the absence of any stabilizing agent such as surfactants or steric stabilizers. The effects of various polymerization parameters such as 1‐propanol fraction in the reaction media, initiator and total monomer concentration, DVB content, polymerization time and polymerization temperature on the morphology, particle size and size distribution were investigated. It was found that smoothly shaped stable particles were obtained when less than 70 vol% of 1‐propanol was used in the media. The particle size increased with the AIBN concentration, whereas the change of uniformity was less obvious. Monodisperse microspheres were obtained when the total monomers loading ranged from 0.5 to 3 vol%. The particle diameter ranged from 2.73 to 1.87 µm with an increasing DVB content and the uniformity was enhanced. In addition, the yield of microspheres increased with the increasing total monomer, initiator, and DVB concentration and polymerization time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Poly(glycidyl methacrylate) [poly(GMA)] microspheres of narrow size distribution were prepared in a simple one‐step procedure by dispersion radical polymerization. Depending on the solvent used, poly(GMA) particle size could be controlled in the range of 0.5–4 μm by changing the solubility parameter of the reaction mixture. In N,N′‐dimethylformamide (DMF)/methanol mixture, the particle size increased and the size distribution broadened with decreasing initial solubility parameter. While in the DMF/methanol solvent system, hydroxypropyl cellulose (HPC) or cellulose acetate butyrate (CAB) were taken as steric stabilizers of the dispersion polymerization, poly(vinylpyrrolidone) (PVP) was used in alcoholic media. Contrary to the DMF/methanol system, narrow particle size distributions were obtained with PVP‐stabilized polymerizations in ethanolic, methanolic, propan‐1‐olic or butan‐1‐olic medium. Both the particle size and polydispersity were reduced with increasing stabilizer concentration. If lower molecular‐weight PVP was used, larger microspheres were obtained. Poly(GMA) samples prepared in a neat alcoholic medium virtually quantitatively retained oxirane group content after the polymerization. Reactivity of the poly(GMA) microspheres was confirmed by their hydrolysis and aminolysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3855–3863, 2000  相似文献   

16.
In this work, two different surface imprinting formats have been evaluated using thiabendazole (TBZ) as model template. The first format is a thin film of molecularly imprinted polymer (MIP) grafted from preformed silica particles using an immobilized iniferter‐type initiator (inif‐MIP). The second format is molecularly imprinted polymer microspheres with narrow particle size distribution and core‐shell morphology prepared by precipitation polymerization in a two‐step procedure. For the latter format, polymer microspheres (the core particles) were obtained by precipitation polymerization of divinylbenzene‐80 (DVB‐80) in acetonitrile. Thereafter, the core particles were used as seed particles in the synthesis of MIP shells by copolymerization of DVB‐80 and methacrylic acid in the presence of TBZ in a mixed solvent porogen (acetonitrile/toluene). The materials were characterized by elemental microanalysis, nitrogen sorption porosimetry and scanning (and transmission) electron microscopy. Thereafter, the imprinted materials were assessed as stationary phases in liquid chromatography. From this study it can be concluded that grafted MIP beads can be obtained in a simple and direct manner, consuming only a fraction of the reagents used typically to prepare imprinted particles from a monolithic imprinted polymer. Such materials can be used in the development of in‐line molecularly imprinted solid‐phase extraction methods. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1058–1066, 2010  相似文献   

17.
Poly(N‐isopropylacrylamide) (PNIPAAm)‐based microspheres were prepared by precipitation and dispersion polymerization. The effects of several reaction parameters, such as the type and concentration of the crosslinker (N,N′‐methylenebisacrylamide or ethylene dimethacrylate), medium polarity, concentration of the monomer and initiator, and polymerization temperature, on the properties were examined. The hydrogel microspheres were characterized in terms of their chemical structure, size and size distribution, and morphological and temperature‐induced swelling properties. A decrease in the particle size was observed with increasing polarity of the reaction medium or increasing concentration of poly(N‐vinylpyrrolidone) as a stabilizer in the dispersion polymerization. The higher the content was of the crosslinking agent, the lower the swelling ratio was. Too much crosslinker gave unstable dispersions. Although the solvency of the precipitation polymerization mixture controlled the PNIPAAm microsphere size in the range of 0.2–1 μm, a micrometer range was obtained in the Shellvis 50 and Kraton G 1650 stabilized dispersion polymerizations of N‐isopropylacrylamide in toluene/heptane. Typically, the particles had fairly narrow size distributions. Copolymerization with the functional glycidyl methacrylate monomer afforded microspheres with reactive oxirane groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 968–982, 2006  相似文献   

18.
A series of SiO2/poly(styrene‐co‐butyl acrylate) nanocomposite microspheres with various morphologies (e.g., multicore–shell, normal core–shell, and raspberry‐like) were synthesized via miniemulsion polymerization. The results showed that the morphology of the composite latex particles was strongly influenced by the presence or absence of the soft monomer (butyl acrylate), the particle sizes of the silica, and the emulsifier concentrations. The incorporation of the soft monomer helped in forming the multicore–shell structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3202–3209, 2006  相似文献   

19.
Maghemite (γ‐Fe2O3) colloid has been synthesized by coprecipitation of ferrous and ferric salts in alkaline medium and oxidation. The obtained nanoparticles were complexed with a phosphate macromonomer—penta(propylene glycol) methacrylate phosphate (PPGMAP). Complexes with the weight ratio PPGMAP/γ‐Fe2O3 0.01–10 were investigated using a range of characterization methods. The amount of PPGMAP attached to the particles was about 22 wt %. The size and size distribution of the γ‐Fe2O3 core particles in the dry state was measured by TEM. To complete the TEM images, the hydrodynamic size of the nanoparticles including polymer shell and the maghemite core was determined by DLS measurements in toluene. Magnetic poly(glycidyl methacrylate) (PGMA) nanospheres were obtained by Kraton G 1650‐stabilized and 2,2′‐azobisisobutyronitrile‐initiated polymerization of glycidyl methacrylate (GMA) in toluene or toluene/cyclohexane mixture in the presence of PPGMAP‐coated γ‐Fe2O3 colloid. The effect of Kraton G 1650 concentration on the morphology, PGMA nanosphere size and polydispersity was investigated. The particles were characterized also by both thermogravimetric analysis and magnetic measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4982–4994, 2009  相似文献   

20.
In studying 2,2,6,6‐tetramethy‐1‐piperidinyloxy (TEMPO)‐mediated styrene miniemulsions, we have observed that the surfactant sodium dodecylbenzenesulfonate (SDBS) not only provides colloidal stability but also influences the rate of polymerization. Increasing the SDBS concentration results in higher polymerization rates, although the molecular weight distribution and particle size distribution are not significantly impacted. We have also examined another common sulfonate surfactant, DOWFAX 8390. In contrast to SDBS, DOWFAX 8390 does not affect the polymerization rate. Furthermore, DOWFAX‐stabilized polymerizations are slower than SDBS‐stabilized polymerizations. TEMPO‐mediated bulk styrene polymerizations are also accelerated significantly in the presence of SDBS. Although the mechanism for the rate acceleration is unknown, the experimental evidence suggests that SDBS is participating in the generation of radicals capable of propagating, thereby reducing the TEMPO concentration within the particles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5974–5986, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号