共查询到20条相似文献,搜索用时 13 毫秒
1.
W. B. Tsai W. W. Lin C.‐C. Chieng 《Numerical Methods for Partial Differential Equations》2001,17(5):454-474
A design of varying step size approach both in time span and spatial coordinate systems to achieve fast convergence is demonstrated in this study. This method is based on the concept of minimization of residuals by the Bi‐CGSTAB algorithm, so that the convergence can be enforced by varying the time‐step size. The numerical results show that the time‐step size determined by the proposed method improves the convergence rate for turbulent computations using advanced turbulence models in low Reynolds‐number form, and the degree of improvement increases with the degree of the complexity of the turbulence models. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 454–474, 2001. 相似文献
2.
The finite element method has been well established for numerically solving parabolic partial differential equations (PDEs). Also it is well known that a too large time step should not be chosen in order to obtain a stable and accurate numerical solution. In this article, accuracy analysis shows that a too small time step should not be chosen either for some time‐stepping schemes. Otherwise, the accuracy of the numerical solution cannot be improved or can even be worsened in some cases. Furthermore, the so‐called minimum time step criteria are established for the Crank‐Nicolson scheme, the Galerkin‐time scheme, and the backward‐difference scheme used in the temporal discretization. For the forward‐difference scheme, no minimum time step exists as far as the accuracy is concerned. In the accuracy analysis, no specific initial and boundary conditions are invoked so that such established criteria can be applied to the parabolic PDEs subject to any initial and boundary conditions. These minimum time step criteria are verified in a series of numerical experiments for a one‐dimensional transient field problem with a known analytical solution. The minimum time step criteria developed in this study are useful for choosing appropriate time steps in numerical simulations of practical engineering problems. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006 相似文献
3.
Anthony T. Chronopoulos Andrey B. Kucherov 《Numerical Linear Algebra with Applications》2010,17(1):3-15
Block (including s‐step) iterative methods for (non)symmetric linear systems have been studied and implemented in the past. In this article we present a (combined) block s‐step Krylov iterative method for nonsymmetric linear systems. We then consider the problem of applying any block iterative method to solve a linear system with one right‐hand side using many linearly independent initial residual vectors. We present a new algorithm which combines the many solutions obtained (by any block iterative method) into a single solution to the linear system. This approach of using block methods in order to increase the parallelism of Krylov methods is very useful in parallel systems. We implemented the new method on a parallel computer and we ran tests to validate the accuracy and the performance of the proposed methods. It is expected that the block s‐step methods performance will scale well on other parallel systems because of their efficient use of memory hierarchies and their reduction of the number of global communication operations over the standard methods. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
4.
Liuqiang Zhong Shi Shu Junxian Wang J. Xu 《Numerical Linear Algebra with Applications》2013,20(1):93-111
In this paper, we develop several two‐grid methods for the Nédélec edge finite element approximation of the time‐harmonic Maxwell equations. We first present a two‐grid method that uses a coarse space to solve the original problem and then use a fine space to solve a corresponding symmetric positive definite problem. Then, we present two types of iterative two‐grid methods, one is to add the kernel of the curl ‐operator in the fine space to a coarse mesh space to solve the original problem and the other is to use an inner iterative method for dealing with the kernel of the curl ‐operator in the fine space and the coarse space, separately. We provide the error estimates for the first two methods and present numerical experiments to show the efficiency of our methods.Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
5.
T. Monovasilis Z. Kalogiratou Higinio Ramos T. E. Simos 《Mathematical Methods in the Applied Sciences》2017,40(14):5286-5294
The construction of modified two‐step hybrid methods for the numerical solution of second‐order initial value problems with periodic or oscillatory behavior is considered. The coefficients of the new methods depend on the frequency of each problem so that the harmonic oscillator is integrated exactly. Numerical experiments indicate that the new methods are more efficient than existing methods with constant or variable coefficients. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
6.
In this paper, we apply the two‐step Newton method to solve inverse eigenvalue problems, including exact Newton, Newton‐like, and inexact Newton‐like versions. Our results show that both two‐step Newton and two‐step Newton‐like methods converge cubically, and the two‐step inexact Newton‐like method is super quadratically convergent. Numerical implementations demonstrate the effectiveness of new algorithms. 相似文献
7.
High‐order split‐step theta methods for non‐autonomous stochastic differential equations with non‐globally Lipschitz continuous coefficients 下载免费PDF全文
Chao Yue 《Mathematical Methods in the Applied Sciences》2016,39(9):2380-2400
In this paper, we first propose the so‐called improved split‐step theta methods for non‐autonomous stochastic differential equations driven by non‐commutative noise. Then, we prove that the improved split‐step theta method is convergent with strong order of one for stochastic differential equations with the drift coefficient satisfying a superlinearly growing condition and a one‐sided Lipschitz continuous condition. Finally, the obtained results are verified by numerical experiments. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
Maxim A. Medvedev Theodore E. Simos Charalampos Tsitouras 《Mathematical Methods in the Applied Sciences》2019,42(18):7047-7058
The classical explicit fourth‐order Numerov‐type method is considered. The equations of condition for deriving the corresponding interpolants are given. Then using a local error estimation, we may construct a stable variable step scheme. Applying this new implementation in a set of problems, we get very pleasant results. 相似文献
9.
Fathalla A. Rihan 《Numerical Methods for Partial Differential Equations》2010,26(6):1556-1571
This article is concerned with ?‐methods for delay parabolic partial differential equations. The methodology is extended to time‐fractional‐order parabolic partial differential equations in the sense of Caputo. The fully implicit scheme preserves delay‐independent asymptotic stability and the solution continuously depends on the time‐fractional order. Several numerical examples of interest are included to demonstrate the effectiveness of the method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010 相似文献
10.
G. Yu. Kulikov E. Yu. Khrustaleva 《Computational Mathematics and Mathematical Physics》2008,48(9):1545-1569
A theory is presented for implicit one-step extrapolation methods for ordinary differential equations. The computational schemes used in such methods are based on the implicit Runge-Kutta methods. An efficient implementation of implicit extrapolation is based on the combined step size and order control. The emphasis is placed on calculating and controlling the global error of the numerical solution. The aim is to achieve the user-prescribed accuracy in an automatic mode (ignoring round-off errors). All the theoretical conclusions of this paper are supported by the numerical results obtained for test problems. 相似文献
11.
Maxim A. Medvedev T. E. Simos Ch. Tsitouras 《Mathematical Methods in the Applied Sciences》2019,42(2):710-716
A two–stage, explicit, hybrid four–step method of sixth order for the solution of the special second order initial value problem is presented here. The new method is trigonometric fitted, thus it uses variable coefficients. Numerical tests illustrate the superiority of our proposal over similar methods found in the relevant literature on a set of standard problems. 相似文献
12.
Yinnian He 《Numerical Methods for Partial Differential Equations》2012,28(1):155-187
In this article, we study the stability and convergence of the Crank‐Nicolson/Adams‐Bashforth scheme for the two‐dimensional nonstationary Navier‐Stokes equations with a nonsmooth initial data. A finite element method is applied for the spatial approximation of the velocity and pressure. The time discretization is based on the implicit Crank‐Nicolson scheme for the linear terms and the explicit Adams‐Bashforth scheme for the nonlinear term. Moreover, we prove that the scheme is almost unconditionally stable for a nonsmooth initial data u0 with div u0 = 0, i.e., the time step τ satisfies: τ ≤ C0 if u0 ∈ H1 ∩ L∞; τ |log h| ≤ C0 if u0 ∈ H1 for the mesh size h and some positive constant C0. Finally, we obtain some error estimates for the discrete velocity and pressure under the above stability condition. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 28: 155‐187, 2012 相似文献
13.
Xiaofan Li Jian‐an Fang Huiyuan Li 《Mathematical Methods in the Applied Sciences》2019,42(8):2746-2760
In this paper, on the basis of the Lyapunov stability theory and finite‐time stability lemma, the finite‐time synchronization problem for memristive neural networks with time‐varying delays is studied by two control methods. First, the discontinuous state‐feedback control rule containing integral part for square sum of the synchronization error and the discontinuous adaptive control rule are designed for realizing synchronization of drive‐response memristive neural networks in finite time, respectively. Then, by using some important inequalities and defining suitable Lyapunov functions, some algebraic sufficient criteria guaranteeing finite‐time synchronization are deduced for drive‐response memristive neural networks in finite time. Furthermore, we give the estimation of the upper bounds of the settling time of finite‐time synchronization. Lastly, the effectiveness of the obtained sufficient criteria guaranteeing finite‐time synchronization is validated by simulation. 相似文献
14.
Haniye Dehestani Yadollah Ordokhani Mohsen Razzaghi 《Mathematical Methods in the Applied Sciences》2019,42(18):7296-7313
In this paper, we present a novel discrete scheme based on Genocchi polynomials and fractional Laguerre functions to solve multiterm variable‐order time‐fractional partial differential equations (M‐V‐TFPDEs) in the large interval. In this purpose, the accurate modified operational matrices are constructed to reduce the problems into a system of algebraic equations. Also, the computational algorithm based on the method and modified operational matrices in the large interval is easily implemented. Furthermore, we discuss the error estimation of the proposed method. Ultimately, to confirm our theoretical analysis and accuracy of numerical approach, several examples are presented. 相似文献
15.
G. Yu. Kulikov E. Yu. Khrustaleva 《Computational Mathematics and Mathematical Physics》2008,48(8):1313-1326
A general theory is presented for explicit one-step extrapolation methods for ordinary differential equations. The emphasis is placed on the efficient use of extrapolation processes of this type in practice. The choice of the optimal step size and the order at each grid point is made in the automatic mode with the minimum computational work per step being the guiding principle. This principle makes it possible to find a numerical solution in the minimal time. The efficiency of the automatic step size and order control is demonstrated using test problems for which the well-known GBS method was used. 相似文献
16.
Marco S. Reis Ricardo Rendall Biagio Palumbo Antonio Lepore Christian Capezza 《商业与工业应用随机模型》2020,36(1):110-123
Shipping companies are forced by the current EU regulation to set up a system for monitoring, reporting, and verification of harmful emissions from their fleet. In this regulatory background, data collected from onboard sensors can be utilized to assess the ship's operating conditions and quantify its CO2 emission levels. The standard approach for analyzing such data sets is based on summarizing the measurements obtained during a given voyage by the average value. However, this compression step may lead to significant information loss since most variables present a dynamic profile that is not well approximated by the average value only. Therefore, in this work, we test two feature‐oriented methods that are able to extract additional features, namely, profile‐driven features (PdF) and statistical pattern analysis (SPA). A real data set from a Ro‐Pax ship is then considered to test the selected methods. The data set is segregated according to the voyage distance into short, medium, and long routes. Both PdF and SPA are compared with the standard approach, and the results demonstrate the benefits of employing more systematic and informative feature‐oriented methods. For the short route, no method is able to predict CO2 emissions in a satisfactory way, whereas for the medium and long routes, regression models built using features obtained from both PdF and SPA improve their prediction performance. In particular, for the long route, the standard approach failed to provide reasonably good predictions. 相似文献
17.
In this article, we present an extension of our previous approaches for steady‐state higher‐order compact (HOC) difference methods to time‐dependent problems. The formulation also provides a framework for similar treatment of other HOC spatial schemes. A stability analysis is provided for transient convection‐diffusion in 1D and transient diffusion in 2D. Supporting numerical experiments are included to illustrate stability and accuracy as well as oscillatory and dissipative behavior. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 657–672, 2001 相似文献
18.
Gegenbauer spectral method for time‐fractional convection–diffusion equations with variable coefficients 下载免费PDF全文
Mohammad Mahdi Izadkhah Jafar Saberi‐Nadjafi 《Mathematical Methods in the Applied Sciences》2015,38(15):3183-3194
In this paper, we study the numerical solution to time‐fractional partial differential equations with variable coefficients that involve temporal Caputo derivative. A spectral method based on Gegenbauer polynomials is taken for approximating the solution of the given time‐fractional partial differential equation in time and a collocation method in space. The suggested method reduces this type of equation to the solution of a linear algebraic system. Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
Finite‐time stability and boundedness of switched nonlinear time‐delay systems under state‐dependent switching 下载免费PDF全文
This article investigates the finite‐time stability, stabilization, and boundedness problems for switched nonlinear systems with time‐delay. Unlike the existing average dwell‐time technique based on time‐dependent switching strategy, largest region function strategy, that is, state‐dependent switching control strategy is adopted to design the switching signal, which does not require the switching instants to be given in advance. Some sufficient conditions which guarantee finite‐time stable, stabilization, and boundedness of switched nonlinear systems with time‐delay are presented in terms of linear matrix inequalities. Detail proofs are given using multiple Lyapunov‐like functions. A numerical example is given to illustrate the effectiveness of the proposed methods. © 2014 Wiley Periodicals, Inc. Complexity 21: 267–275, 2015 相似文献
20.
Sanoe Koonprasert Kenneth L. Bowers 《Numerical Methods for Partial Differential Equations》2004,20(4):494-526
The fully Sinc‐Galerkin method is developed for a family of complex‐valued partial differential equations with time‐dependent boundary conditions. The Sinc‐Galerkin discrete system is formulated and represented by a Kronecker product form of those equations. The numerical solution is efficiently calculated and the method exhibits an exponential convergence rate. Several examples, some with a real‐valued solution and some with a complex‐valued solution, are used to demonstrate the performance of this method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004 相似文献