首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Sr–Ge–O system has an earth‐scientific importance as a potentially good low‐pressure analog of the Ca–Si–O system, one of the major components in the constituent minerals of the Earth's crust and mantle. However, it is one of the germanate systems that has not yet been fully examined in the phase relations and structural properties. The recent findings that the SrGeO3 high‐pressure perovskite phase is the first Ge‐based transparent electronic conductor make the Sr–Ge–O system interesting in the field of materials science. In the present study, we have revealed the existence of a new high‐pressure strontium germanate, SrGe2O5. Single crystals of this compound crystallized as a co‐existent phase with SrGeO3 perovskite single crystals in the sample recovered in the compression experiment of SrGeO3 pseudowollastonite conducted at 6 GPa and 1223 K. The crystal structure consists of germanium–oxygen framework layers stacked along [001], with Sr atoms located at the 12‐coordinated cuboctahedral site; the layers are formed by the corner linkages between GeO6 octahedra and between GeO6 octahedra and GeO4 tetrahedra. The present SrGe2O5 is thus isostructural with the high‐pressure phases of SrSi2O5 and BaGe2O5. Comparison of these three compounds leads to the conclusion that the structural responses of the GeO6 and GeO4 polyhedra to cation substitution at the Sr site are much less than that of the SrO12 cuboctahedron to cation substitution at the Ge sites. Such a difference in the structural response is closely related to the bonding nature.  相似文献   

2.
The structure of copper(I,II) penta­chromium(III) germanate, Cu(Cu0.44Cr4.56)Ge2O12, contains one Cu position (m2m), one Ge position (m) and three Cr positions (2/m, m and 2). The close‐packed structure is described in terms of slabs of edge‐sharing Cr3+O6 octa­hedra and isolated CuO4 and GeO4 tetra­hedra. These slabs are aligned parallel to the bc plane and are separated from each other by GeO4 tetra­hedra along a. The tetra­hedral coordination observed for the Cu+/Cu2+ ions represents an unusual feature of the structure. The Cr—O and Cu—O bond lengths are compared with literature data.  相似文献   

3.
The structure analyses of sodium chromium digermanate, NaCrGe2O6, (I), and lithium chromium digermanate, LiCrGe2O6, (II), provide important structural information for the clinopyroxene family, and form part of our ongoing studies on the phase transitions and magnetic properties of clinopyroxenes. (I) shows C2/c symmetry at 298 K, contains one Na, one Cr (both site symmetry 2 on special position 4e), one Ge and three O‐atom positions (on general positions 8f) and displays the well known clinopyroxene topology. The basic units of the structure of (I) are infinite zigzag chains of edge‐sharing Cr3+O6 octahedra (M1 site), infinite chains of corner‐sharing GeO4 tetrahedra, connected to the M1 chains by common corners, and Na sites occupying interstitial space. (II) was found to have P21/c symmetry at 298 K. The structure contains one Na, one Cr, two distinct Ge and six O‐atom positions, all on general positions 4e. The general topology of the structure of (II) is similar to that of (I); however, the loss of the twofold symmetry makes it possible for two distinct tetrahedral chains, having different conformation states, to exist. While sodium is (6+2)‐fold coordinated, lithium displays a pure sixfold coordination. Structural details are given and chemical comparison is made between silicate and germanate chromium‐based clinopyroxenes.  相似文献   

4.
In bis­[1‐(3‐pyridyl)butane‐1,3‐dionato]copper(II) (the Cu atom occupies a centre of inversion), [Cu(C9H8NO2)2], (I), and bis­[1‐(4‐pyridyl)butane‐1,3‐dionato]copper(II) methanol solvate, [Cu(C9H8NO2)2]·CH3OH, (II), the O,O′‐chelating diketonate ligands support square‐planar coordination of the metal ions [Cu—O = 1.948 (1)–1.965 (1) Å]. Weaker Cu⋯N inter­actions [2.405 (2)–2.499 (2) Å], at both axial sides, occur between symmetry‐related bis­(1‐pyridylbutane‐1,3‐dion­ato)copper(II) mol­ecules. This causes their self‐organization into two‐dimensional square‐grid frameworks, with uniform [6.48 Å for (I)] or alternating [4.72 and 6.66 Å for (II)] inter­layer separations. Guest methanol mol­ecules in (II) reside between the distal layers and form weak hydrogen bonds to coordinated O atoms [O⋯O = 3.018 (4) Å].  相似文献   

5.
The characterization of the complexes [Cu2(2‐Clnic)4(H2O)2] ( 1 ), [Cu(2,6‐Cl2nic)2(H2O)2] ( 2 ) and [Cu(5‐Brnic)2(H2O)2]n ( 3 ) (where 2‐Clnic = 2‐chloronicotinate, 2,6‐Cl2nic = 2,6‐dichloronicotinate or 5‐Brnic = 5‐bromonicotinate) was based on elemental analysis, IR, electronic and EPR spectra, and magnetic susceptibility. Complex 1 was also studied by X‐ray analysis at 298 1a and 80 K 1b . The complex 1 contains a dinuclear Cu‐acetate molecular structure in which the carboxyl groups of the 2‐chloronicotinate ligands act as bridges and water molecules are at apical positions. The stereochemistry about Cu atom at both temperatures is typical for square pyramidal geometry with CuO4O chromophore. The Cu‐Cu distance is 2.6513(8) and 2.6382(6) Å for 1a and 1b , respectively. The Cu atoms are displaced by 0.2069(9) and 0.1973(7) Å, respectively, from the plane containing four oxygen atoms bonded to the Cu atom toward the apical water molecules. Strong and weak hydrogen bonds as well as C–Cl···π interactions in the crystal structure are discussed as well. Both complexes, monomeric [Cu(2,6‐Cl2nic)2(H2O)2] ( 2 ) and polymeric [Cu(5‐Brnic)2(H2O)2]n ( 3 ), possess octahedral copper(II) stereochemistry with differing tetragonal distortions.  相似文献   

6.
The crystal structure of tetrabismuth tris(germanate), Bi4Ge3O12 (I3d, Z = 4), is stable to at least 7.30 GPa, as demonstrated by hydrostatic single‐crystal X‐ray diffraction measurements in a diamond anvil cell at room temperature. The highest pressure reached in this study is close to the onset of amorphization at about 8 GPa. The Bi and Ge atoms are located at the 16c (3) and 12a () Wyckoff positions, respectively. The compression mainly affects the distorted BiO6 octahedra, while the GeO4 tetrahedra are relatively rigid. When compared with the values obtained under ambient conditions, the long Bi—O distances decrease with increasing pressure, while the short Bi—O distances do not change.  相似文献   

7.
Coulometric titrations using solid zirconia ionic conductors have been employed to determine the phase diagram of the ternary system CuGeO in the temperature range from 750 to 950°C. CuGeO3 was found to be the only existing ternary compound in the system. It is in equilibrium with Cu2O, CuO, GeO2, and oxygen of atmospheric pressure. Cu and Cu2O may coexist with GeO2. The standard Gibbs energy of formation of CuGeO3 was found to be ΔG°f (CuGeO3) = ?424.5 kJ/mole at 900°C. The standard enthalpy and entropy of formation are ΔH0f = ?756.8 kJ/mole and ΔS°f = ?283 J/mole·K, respectively.  相似文献   

8.
Potassium Amido Trioxo Germanates(IV) – Hydrogen Bridge Bonds in K3GeO3NH2 and K3GeO3NH2 · KNH2 Colorless crystals of K3GeO3NH2 and of K3GeO3NH2 · KNH2 were obtained by the reaction of KNH2 with GeO2 in supercritical ammonia at 450°C and p = 6 kbar in high-pressure autoclaves within 15 resp. 5 days. The crystal structures of both compounds were solved by X-ray single crystal methods. K3GeO3NH2: P1 , a = 6.390(1) Å, b = 6.684(1) Å, c = 7.206(1) Å, α = 96.47(1)°, β = 101.66(1)°, γ = 91.66(1)°, Z = 2, R/Rw = 0.020/0.022, N(I) ≥ 2σ(I) = 3023, N(Var.) = 82 K3GeO3NH2 · KNH2: P21/c, a = 10.982(6) Å, b = 6.429(1) Å, c = 12.256(8) Å, β = 106.12(1)°, Z = 4, R/Rw = 0.022/0.029, N(F) ≥ 3σ(F) = 1745, N(Var.) = 107. In K3GeO3NH2 tetrahedral ions GeO3NH23? are connected to chains by N? H …? O bridge bonds with 2.18 Å ≤ d(H …? O) ≤ 2.40 Å for d(N? H) ? 1.0 Å and by potassium ions while in K3GeO3NH2 · KNH2 bridge bonds between NH2 groups of GeO3NH23? and NH2? ions as acceptors occur with 2.41 Å ≤ d((N? )H …? NH2?) ≤ 2.61 Å for d(N? H) ? 1.0 Å.  相似文献   

9.
TlCu5O(VO4)3 with KCu5O(VO4)3 Structure – a Thallium Copper(II) Oxide Vanadate as an Oxidation Product of a Tl/Cu/V Alloy Brown‐black crystals of the new oxide vanadate TlCu5O(VO4)3 (triclinic, P1, a = 610.4(1) pm, b = 828.9(1) pm, c = 1075.3(1) pm, α = 97.70(1)°, β = 92.25(1)°, γ = 90.28(1)°, Z = 2) were obtained as a byproduct during the reaction of a Tl/Cu/V alloy with oxygen. The compound is isotypic with KCu5O(VO4)3. All the crystals investigated were twins by non‐merohedry with [100] as the twin axis. The structure contains ladder shaped [Cu10O26]‐ribbons composed of edge‐ and corner‐sharing [CuO5]‐polyhedra (tetragonal pyramids and trigonal bipyramids) and linked by vanadate groups. The thallium ions fill channels running along the a axis. No stereochemical activity of the thallium(I)‐lone pair is observed.  相似文献   

10.
Novel Observations on the Chemical Transport of GeO2. II. Transport Agent Hydrogen The endothermic reaction (1) (2) is the basis of the deposition of GeO2 in the temperature gradient T2 ? T1 = 100 K at the low temperature T1 = 1023 K. The quartz modification of GeO2 is obtained as micro crystalline coating and acicular, colourless crystals adherent to it. The gaseous molecules H2, H2O and (GeO)n (with n = 1, 2, 3) participate in the chemical transport. The chemical transport depends on the concentration of H2. At low H2-concentration GeO2 is transported, with growing H2-pressure at the beginning of the experiments Ge and GeO2 are deposited simultaneously. A further increase of the H2-pressure leads again to a chemical transport of GeO2, followed by a range of Ge-deposition. After reaching a steady state in each experiment only one phase is transported. The sequence of deposition can be explained by model calculations. A comparison of experimentally determined rates of transport with calculated values shows that under the present conditions at a total pressure of ∑P = 1 atm (298 K) no kinetic inhibition of the phase transfer reactions exists.  相似文献   

11.
By alternating‐current electrochemical synthesis crystals of {Cu[H2NC5H4N(C3H5)]Br2} ˙ H2O ( I ), {Cu[H2NC5H4N(C3H5)]Br0.65Cl1.35} ˙ H2O ( II ) and {Cu[H2NC5H4N(C3H5)]Cl2} ( III ) π‐complexes have been obtained and structurally investigated. The I and II compounds are isostructural and crystallize in a monoclinic sp. gr. P21/c, I : a = 7.359(2)Å, b = 12.3880(6)Å, c = 13.637(3)Å, β = 107.03(1)°, V = 1188.7(4)Å3, Z = 4 for C8H13N2OBr2Cu composition, R = 0.0293 for 2140 reflections. II : a = 7.2771(6)Å, b = 12.3338(3)Å, c = 13.4366(7)Å, β = 107.632(2)°, V = 1149.3(1)Å3, Z = 4 for C8H13N2Br0.65Cl1.35Cu composition, R = 0.0463 for 2185 reflections. Metal and halogen atoms form centrosymmetric Cu2X4 dimers. Each copper atom is surrounded by three halogen atoms and by a weakly bonded C=C‐group of the onium moiety. Isolated {Cu[H2NC5H4N(C3H5)]}2X4 dimers are combined into a three‐dimensional network due to a bridging function of water molecules via a system of rather strong hydrogen bonds. Chlorine derivative III crystallizes in another structure type: sp. gr. C2/c, a = 21.568(7)Å, b = 7.260(2)Å, c = 13.331(3)Å, β = 95.65(2)°, V = 2077(2)Å3, Z = 8 for C8H11N2Cl2Cu composition. Copper atom, included in CuCl2 isolated fragment, is coordinated to a C=C‐bond of ligand moiety. N‐H…Cl hydrogen bonds unite Cu[H2NC5H4N(C3H5)]Cl2 subunits into infinite ribbons. π‐Interaction in III appears to be more effective than in I and II .  相似文献   

12.
Bis(hinokitiolato)copper(II), Cu(hino)2, exhibits both antibacterial and antiviral properties, and has been previously shown to exist in two modifications. A third modification has now been confirmed, namely tetrakis(μ2‐3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)bis(3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)tricopper(II)–bis(μ2‐3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)bis[(3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)copper(II)] (1/1), [Cu(C10H11O2)2]3·[Cu(C10H11O2)2]2, where 3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olate is the systematic name for the hinokitiolate anion. This new modification is composed of discrete [cis‐Cu(hino)2]2[trans‐Cu(hino)2] trimers and [cis‐Cu(hino)2]2 dimers. The Cu atoms are bridged by μ2‐O atoms from the hinokitiolate ligands to give distorted square‐pyramidal and distorted octahedral CuII coordination environments. Hence, the CuII environments are CuO5/CuO6/CuO5 for the trimer and CuO5/CuO5 for the dimer. Each trimer and dimer has crystallographically imposed inversion symmetry. The trimer has never been observed before, the dimer has been seen only once before, and the combination of the two together in the same lattice is unprecedented. The CuO5 cores exhibit four strong basal Cu—O bonds [1.915 (2)–1.931 (2) Å] and one weak apical Cu—O bond [2.652 (2)–2.658 (2) Å]. The CuO6 core exhibits four strong equatorial Cu—O bonds [1.922 (2)–1.929 (2) Å] and two very weak axial Cu—O bonds [2.911 (3) Å]. The bite angles for the chelating hinokitiolate ligands range from 83.13 (11) to 83.90 (10)°.  相似文献   

13.
In the title complex, poly[copper(II)‐di‐μ‐5‐carboxy‐1H‐imidazole‐4‐carboxyl­ato], [Cu(C5H3N2O4)2]n or [Cu(H2Imda)2]n, each imidazole moiety is bonded to the Cu atom via O and N atoms to give a square‐planar coordination [Cu—O = 2.014 (2) and 2.016 (2) Å, and Cu—N = 1.982 (3) and 1.992 (2) Å]. The distorted square‐pyramidal geometry at the Cu atom results from coordination to an adjacent O atom [Cu—O = 2.305 (2) Å], which generates zigzag chains. There is a sixth, weaker, octahedral coordination to the Cu atom from an inversion‐related O atom [Cu—O = 3.090 (2) Å], which links the chains into sheets in the (100) plane. Imidazole moieties in the sheets are linked in the [100] direction by pairs of N—H⋯O and C—H⋯O hydrogen bonds, thus generating a three‐dimensional network.  相似文献   

14.
The crystal structure of CuGeO3 (D 2h 5 -Pbmm) has been redetermined by means of 3-dimensional Fourier syntheses. The structure is built up by [CuO4]- and [GeO3]-chains (Einereinfachkette). The interatomic distances are found to be: Ge?O: 1,769 (2x) and 1,724 (2x) Å; Cu?O: 1,942 (4x) and 2,766 (2x) Å.  相似文献   

15.
The nickel(II) and copper(II) complexes of meso-3,6,6,9-tetramethyl-4,8-diazaundecane-2,10-dione dioxime (meso-HM-PAO) have an intramolecular hydrogen bond between cis oxime groups. [Cu(meso-HM-PAO-H)(H2O)](NCS) crystallizes in space group P21/n with a = 7.692(1), b = 12.028(2), c=20.235(3) Å, β=93.03(1)°, Z = 4 and Dc=1.46 g/cm3. The final R value for this complex was 0.034 for 2223 observed reflections with I ≥ 2.5σ (I). The Cu(II) coordination is a distorted square pyramid. The Cu(II) ion is five-coorinated with the diazadioxime N atoms equatorial and water O atom axial. The Cu(II) is 0.12 Å from the equatorial plane towards the hydrate. The equatorial Cu-N distances span a narrow range, 1.953(3)-1.999(3) Å. The axial Cu-O distance is 2.314(3) Å. The thiocyanate group is almost linear. The intramolecular O ?O hydrogen bond length is 2.479(4) Å. [Ni(meso-HM-PAO-H)](ClO4) crystallizes in space group P21/c with a = 14.774(3), b = 12.752(3), c = 20.035(4) Å, β = 92.94(3)°, Z = 8 and Dc = 1.51 g/cm3. The final R value for the complex was 0.053 for 4794 observed reflections with F ≥ 4σ (F). The coordination about Ni(II) is a slightly distorted square plane. The Ni(II) ion is 0.0673(7) Å from the best plane of the four donor nitrogen atoms away from the perchlorate ion. The Ni-N distances span a narrow range 1.863(4)-1.927(4) Å. There are two molecules per asymmetrical unit resulting in eight molecules being packed in an unit cell; they are bound together by van der Waals interactions. The O-H ?O bonds of these complexes give characteristic infrared absorptions as well as chemical shift of the 1H NMR signal (Ni complex).  相似文献   

16.
A heteronuclear germanium(IV) and copper(II) complex with 1,3-diamino-2-propanoltetraacetic acid (H5Hpdta) has been synthesized for the first time. The compound has been characterized by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The structure of the complex [(H2O)(OH)Ge(μ-Hpdta)Cu(H2O)] · 3H2O (I) has been determined by single-crystal X-ray diffraction. The crystals of I are monoclinic, a = 1 5.327(4) Å, b = 11.626(3) Å, c =21.058(3) Å, β = 96.35(2)°, V = 3729.2(2) Å3, Z = 8, space group C2/c, R1 = 0.0551 on 3090 reflections with I > 2σ(I). The structural units of the crystal of I are binuclear complex molecules [(H2O)(OH)Ge(μ-Hpdta)Cu(H2O)] and crystal water molecules. The germanium and copper atoms are linked by the bridging oxygen atom of the deprotonated isopropanol group of the Hpdta5? ligand (Ge-O, 1.843(3) Å; Cu-O, 2.221(3) Å). The coordination spheres of the Ge and Cu atoms contain each one nitrogen atom (Ge-N, 2.090(4) Å; Cu-N, 2.000(4) Å) and two carboxyl oxygen atoms from four acetate arms of the heptadentate Hpdta5? ligand (av. Ge-O, 1.909(3) Å; Cu-O, 1.948(3) Å). The coordination polyhedron of the Ge atom is completed to a distorted octahedron by the oxygen atoms of the terminal hydroxy group (Ge-O, 1.786(3) Å) and a water molecule (Ge-O, 1.904(3)Å). The coordination polyhedron of the copper atom is completed to a prolate tetragonal pyramid (4 + 1) by the oxygen atom of a water molecule in the equatorial position (Cu-O, 1.955(4) Å) and the bridging O(11) atom (Hpdta5?) in the apical position. Binuclear molecules are linked pairwise in a head-to-head manner via double Cu-O(2) bridges to form the centrosymmetric tetranuclear supramolecule {[(H2O)(OH)Ge(μ-Hpdta)Cu(H2O)]}2. The coordination of the Cu atom is completed by the weak Cu-O(2A) contact (3.303 Å) to an asymmetrically elongated tetragonal bipyramid (4 + 1 +1). In the crystal, the complex molecules and crystal water molecules are combined by a system of hydrogen bonds into a three-dimensional framework.  相似文献   

17.
This paper reports the hydrothermal synthesis and crystal structure refinement of diiron(II) phosphate hydroxide, FeII2(PO4)(OH), obtained at 1063 K and 2.5 GPa. This phosphate is the synthetic analogue of the mineral wolfeite, and has a crystal structure topologically identical to those of minerals of the triplite–triploidite group. The complex framework contains edge‐ and corner‐sharing FeO4(OH) and FeO4(OH)2 polyhedra, linked via corner‐sharing to the PO4 tetrahedra (average P—O distances are between 1.537 and 1.544 Å). Four five‐coordinated Fe sites are at the centers of distorted trigonal bipyramids (average Fe—O distances are between 2.070 and 2.105 Å), whereas the coordination environments of the remaining Fe sites are distorted octahedra (average Fe—O distances are between 2.146 and 2.180 Å). The Fe—O distances are similar to those observed in natural Mg‐rich wolfeite, except for two Fe—O bond distances, which are significantly longer in synthetic Fe2+2(PO4)(OH).  相似文献   

18.
Titanium(III) phosphate, TiPO4 , is a typical example of an oxyphosphorus compound containing covalent P?O bonds. Single‐crystal X‐ray diffraction studies of TiPO4 reveal complex and unexpected structural and chemical behavior as a function of pressure at room temperature. A series of phase transitions lead to the high‐pressure phase V, which is stable above 46 GPa and features an unusual oxygen coordination of the phosphorus atoms. TiPO4‐V is the first inorganic phosphorus‐containing compound that exhibits fivefold coordination with oxygen. Up to the highest studied pressure of 56 GPa, TiPO4‐V coexists with TiPO4‐IV, which is less dense and might be kinetically stabilized. Above a pressure of about 6 GPa, TiPO4‐II is found to be an incommensurately modulated phase whereas a lock‐in transition at about 7 GPa leads to TiPO4‐III with a fourfold superstructure compared to the structure of TiPO4‐I at ambient conditions. TiPO4‐II and TiPO4‐III are similar to the corresponding low‐temperature incommensurate and commensurate magnetic phases and reflect the strong pressure dependence of the spin‐Peierls interactions.  相似文献   

19.
A high‐pressure modification of monocalcium gallate (CaGa2O4) has been prepared in a piston‐cylinder apparatus at 700 °C and 4.0 GPa. The compound is orthorhombic (space group Pnam, a = 9.12476(15) Å, b = 10.56093(18) Å, c = 2.98547(4) Å, V = 287.70(1) Å3, Z = 4, Dcalc = 5.62 g/cm3) and belongs to the CaFe2O4‐type structure family. The structure was refined by the Rietveld method using laboratory X‐ray powder diffraction data. Two crystallographically independent GaO6‐octahedra forming edge‐sharing double chains can be distinguished. The shared edges exhibit a considerable shortening. The chains are running parallel to the c‐axis and are linked by corner‐sharing. They enclose tunnels in which the calcium atoms are located for charge compensation. Each calcium cation has eight nearest oxygen neighbors. The coordination environment can be described as a bicapped trigonal prism.  相似文献   

20.
In the system ZnO/H3PO4/H2O/1,4‐diazacycloheptane (C5H12N2), a new zincophosphate (ZnPO), (C5H14N2)[Zn3(HPO4)4] ( I ), was prepared by hydrothermal transformation (180 °C) of the known ZnPO hydrate (C5H14N2)[Zn2(HPO4)3]·H2O ( II ). The thermally‐induced transformation is reversible; upon keeping the heterogeneous mixture of I and mother liquor at 80 °C recrystallization of II was observed. Single‐crystal X‐ray crystallography revealed that I possesses a unique three‐dimensional (3D) open‐framework structure built from corner‐linked ZnO4 and HPO4 tetrahedra. The (3,4)‐connected framework of I differs considerably from the 3D open‐framework ZnPO structure of II . Crystal data for I : Monoclinic system, space group Cc (No. 9) , Z = 4, a = 9.1389(6), b = 23.627(2), c = 9.3073(6) Å, β = 109.463(7)°, T = 298 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号