首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel miktofunctional initiator ( 1 ), 2‐hydroxyethyl 3‐[(2‐bromopropanoyl)oxy]‐2‐{[(2‐bromopropanoyl)oxy]methyl}‐2‐methyl‐propanoate, possessing one initiating site for ring‐opening polymerization (ROP) and two initiating sites for atom transfer radical polymerization (ATRP), was synthesized in a three‐step reaction sequence. This initiator was first used in the ROP of ?‐caprolactone, and this led to a corresponding polymer with secondary bromide end groups. The obtained poly(?‐caprolactone) (PCL) was then used as a macroinitiator for the ATRP of tert‐butyl acrylate or methyl methacrylate, and this resulted in AB2‐type PCL–[poly(tert‐butyl acrylate)]2 or PCL–[poly(methyl methacrylate)]2 miktoarm star polymers with controlled molecular weights and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.23) via the ROP–ATRP sequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2313–2320, 2004  相似文献   

2.
An ABC‐type miktoarm star polymer was prepared with a core‐out method via a combination of ring‐opening polymerization (ROP), stable free‐radical polymerization (SFRP), and atom transfer radical polymerization (ATRP). First, ROP of ϵ‐caprolactone was carried out with a miktofunctional initiator, 2‐(2‐bromo‐2‐methyl‐propionyloxymethyl)‐3‐hydroxy‐2‐methyl‐propionic acid 2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yl oxy)‐ethyl ester, at 110 °C. Second, previously obtained poly(ϵ‐caprolactone) (PCL) was used as a macroinitiator for SFRP of styrene at 125 °C. As a third step, this PCL–polystyrene (PSt) precursor with a bromine functionality in the core was used as a macroinitiator for ATRP of tert‐butyl acrylate in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 100 °C. This produced an ABC‐type miktoarm star polymer [PCL–PSt–poly(tert‐butyl acrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.37). The obtained polymers were characterized with gel permeation chromatography and 1H NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4228–4236, 2004  相似文献   

3.
Hetero‐arm star ABC‐type terpolymers, poly(methyl methacrylate)‐polystyrene‐poly(tert‐butyl acrylate) (PMMA‐PS‐PtBA) and PMMA‐PS‐poly(ethylene glycol) (PEG), were prepared by using “Click” chemistry strategy. For this, first, PMMA‐b‐PS with alkyne functional group at the junction point was obtained from successive atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMP) routes. Furthermore, PtBA obtained from ATRP of tBA and commercially available monohydroxyl PEG were efficiently converted to the azide end‐functionalized polymers. As a second step, the alkyne and azide functional polymers were reacted to give the hetero‐arm star polymers in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine ( PMDETA) in DMF at room temperature for 24 h. The hetero‐arm star polymers were characterized by 1H NMR, GPC, and DSC. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5699–5707, 2006  相似文献   

4.
Diels–Alder click reaction was successfully applied for the preparation of 3‐arm star polymers (A3) using furan protected maleimide end‐functionalized polymers and trianthracene functional linking agent (2) at reflux temperature of toluene for 48 h. Well‐defined furan protected maleimide end‐functionalized polymers, poly (ethylene glycol), poly(methyl methacrylate), and poly(tert‐butyl acrylate) were obtained by esterification or atom transfer radical polymerization. Obtained star polymers were characterized via NMR and GPC (refractive index and triple detector detection). Splitting of GPC traces of the resulting polymer mixture notably displayed that Diels–Alder click reaction was a versatile and a reliable route for the preparation of A3 star polymer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 302–313, 2008  相似文献   

5.
Polymers prepared by atom transfer radical polymerization (ATRP) contain end groups defined by the initiator used. Alkyl halides, used as initiators, lead to polymers with an alkyl group at one end and a halide as the other chain end. Using functionalized initiators such as 2‐hydroxyethyl 2‐bromopropionate, hydroxyl groups can be directly incorporated at one polymer chain end while the other end functionality remains a halogen. The direct displacement of the halogen end groups with hydroxyl groups was unsuccessful due to side reactions such as elimination (for polystyrene) or hydrolysis of ester functions (for polyacrylate). Another approach to generate hydroxyl end groups was based on the substitution of the halogen end groups by ethanolamine. This was successful for polystyrene but additional substitution at the backbone esters was observed in polyacrylates. Multiple substitution reactions could be avoided by using 4‐aminobutanol instead of 2‐aminoethanol. Hydroxyl terminated polyacrylates were also obtained by extending the polyacrylate chain end with one allyl alcohol unit in a one‐pot process by adding an excess of allyl alcohol at the end of e polymerization of acrylate.  相似文献   

6.
Hydroxy‐telechelic poly(methyl methacrylate)s of molecular weights below 5000 were obtained by atom transfer radical polymerization (ATRP) of methyl methacrylate followed by end‐capping with allyl alcohol via atom transfer radical addition (ATRA). As initiators for the ATRP, monofunctional initiators with an additional hydroxy group in the molecule or bifunctional initiators were employed. The successful synthesis of the hydroxy‐telechelic PMMA was proved by determination of their molecular weight using MALDI‐TOF‐MS. The efficiency of the end‐capping reaction was determined by 1H NMR spectroscopy using the allyl N‐(4‐tolyl)carbamate as end‐capping agent. Block copolymers comprising a poly(ethylene oxide) (PEO) block and a poly(methyl methacrylate) (PMMA) block were prepared by ATRP using a macroinitiator on the PEO basis. The dormant species of the macroinitiator consists of the phenyl chloroacetate moiety which shows a high rate of initiation. The successful synthesis of the poly(ethylene oxide)‐block‐poly(methyl methacrylate) was proved by 1H NMR spectroscopy; the ratios of EO/MMA repeating units in the feed and the copolymer were nearly equal.  相似文献   

7.
(2‐Bromo‐n‐nonan‐1‐oxycarbonyl)ethyl acrylate was synthesized as an inimer for self‐condensing vinyl polymerization (SCVP) to produce hyperbranched poly(n‐nonyl acrylate), either as a homopolymer or as a copolymer with n‐nonyl acrylate. The inimer was homopolymerized and copolymerized by atom transfer radical polymerization (ATRP) and activator generated by electron transfer ATRP to produce soluble polymers with broad polydispersities (up to ? = 9.91), which is characteristic of hyperbranched polymers produced by SCVP. The resulting hyperbranched (co)polymers were crosslinked by atom transfer radical coupling in both one‐pot and two‐step procedures. The radical–radical crosslinking reaction is extremely efficient, resulting in hard plastic particles from the homopolymer of (2‐bromo‐n‐nonan‐1‐oxycarbonyl)ethyl acrylate synthesized in bulk. Crosslinked organogels that swell in tetrahydrofuran were formed when the rate of crosslinking decreased using acetonitrile solutions. Dynamic shear and stress relaxation experiments demonstrated that the dry network behaves as a covalently crosslinked soft gel, with a glass transition at ?50 °C according to differential scanning calorimetry. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2399–2410  相似文献   

8.
Two novel multifunctional initiators for atom transfer radical polymerization (ATRP) were synthesized by derivatization of tetraethylresorcinarene. The derivatization induced a change in the conformation of the resorcinarene ring, which was confirmed by NMR spectroscopy. The initiators were used in ATRP of tert‐butyl acrylate and methyl methacrylate, producing star polymers with controlled molar masses and low polydispersities. Instead of the expected star polymers with eight arms, polymers with four arms were obtained. Conformational studies on the initiators by rotating‐frame nuclear Overhauser and exchange spectroscopy NMR and molecular modeling suggested that of eight initiator functional groups on tetraethylresorcinarene, four are too close to each other to be able to initiate the chain growth. Starlike poly(tert‐butyl acrylate) macroinitiators were used further in the block copolymerization of methyl methacrylate. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4189–4201, 2004  相似文献   

9.
Poly(oxyethylene)s terminated at both ends with 2‐bromopropionate end‐groups were prepared and characterized by means of MALDI TOF mass spectrometry. It was shown, that atom transfer radical polymerization (ATRP) of methyl methacrylate with a poly(oxyethylene) macroinitiator in bulk proceeds with low initiation efficiency while polymerization of tert‐butyl acrylate proceeds with practically quantitative initiation, leading to ABA block copolymers. Originally formed tert‐butyl acrylate blocks contain terminal bromine, as expected for the ATRP mechanism. MALDI TOF analysis indicates, however, that in the later stages of polymerization side reactions lead to elimination of terminal bromine.  相似文献   

10.
The novel hydrophobic coating material was received for the first time by a two‐step synthetic route. Firstly, the 15‐functional brominated macroinitiator was prepared by the esterification methodology. Next step covers synthesis of star‐like polymers by poly(n‐butyl acrylate) (PBA) arms polymerization via three low‐ppm atom transfer radical polymerization (ATRP) approaches including application of copper and silver wire in SARA and ARGET ATRP, respectively, as driving forces in redox cycle of catalyst, and an external stimulus in the form of electric current (seATRP) as the third approach in copper(II) regeneration system. As expected, the electrochemically mediated technique allows synthesis of tannic acid‐inspired coating polymers in precisely controlled manner during the entire polymerization process, proved by linear first‐order kinetics plot in contrast to above‐mentioned methods, low dispersity (Ð = 1.18) of star‐shaped polymers, and high efficiency of initiation (? i = 81%) determined after detaching of polymers side arms. Macromolecules received by all low‐ppm ATRP solutions were characterized by preserved chain‐end functionality (theoretical dead chain fraction; DCFtheo <1%). Adhesive and hydrophobic properties of received polymer materials were investigated by contact angles (θ) and free surface energy (FSE) calculations. Prepared polymer films besides excellent hydrophobic properties have great potential as a self‐healing solution.  相似文献   

11.
Different diblock copolymers constituted by one segment of a monomer supporting a reactive functional group, like allyl methacrylate (AMA), were synthesized by atom transfer radical polymerization (ATRP). Bromo‐terminated polymers, like polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(butyl acrylate) (PBA) were employed as macroinitiators to form the other blocks. Copolymerizations were carried out using copper chloride with N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as the catalyst system in benzonitrile solution at 70 °C. At the early stage, the ATRP copolymerizations yielded well‐defined linear block copolymers. However, with the polymerization progress a change in the macromolecular architecture takes place due to the secondary reactions caused by the allylic groups, passing to a branched and/or star‐shaped structure until finally yielding gel at monomer conversion around 40% or higher. The block copolymers were characterized by means of size exclusion chromatography (SEC), 1H NMR spectroscopy, and differential scanning calorimetry (DSC). In addition, one of these copolymers, specifically P(BA‐b‐AMA), was satisfactorily modified through osmylation reaction to obtain the subsequent amphiphilic diblock copolymer of P(BA‐b‐DHPMA), where DHPMA is 2,3‐dihydroxypropyl methacrylate; demonstrating the feasibility of side‐chain modification of the functional obtained copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3538–3549, 2007  相似文献   

12.
Multifunctional initiators for atom transfer radical polymerization (ATRP) are prepared by converting ditrimethylolpropane with four hydroxyl groups, dipentaerythritol with six hydroxyl groups, and poly(3‐ethyl‐3‐hydroxymethyl‐oxetane) with ~11 hydroxyl groups to the corresponding 2‐bromoisobutyrates or 2‐bromopropionates as obtained by reaction with acid bromides. Star polystyrene (PS) is produced by using these macroinitiators and neat styrene in a controlled manner by ATRP at 110 °C, employing the catalytic system CuBr and bipyridine. Mn up to 51,000 associated with narrow molecular weight distributions (PDI < 1.1) are obtained with conversions up to 32%. Hydrolysis of the star‐PS leads to linear chains having the expected Mn values. The star‐PS polymers based on dipentaerythritol degrade thermally in nitrogen in a two‐step process in which the first low‐temperature step involves scission of the ester linkages and the second step corresponds to the normal PS degradation. Star poly(methyl acrylates) with various cores are likewise prepared in a controlled manner by ATRP of methyl acrylate in bulk and in solution at 60–80 °C with the 1,1,4,7,7‐pentamethyldiethylene triamine ligand. Under these conditions, higher conversions were possible still maintaining low PDI signaling controlled star growth. Multiarm stars of poly(n‐butyl acrylate) and poly(n‐hexyl acrylate) with controlled characteristics have also been prepared. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3748–3759, 2005  相似文献   

13.
The vitamin B8‐based macroinitiator with six 2‐bromoisobutyric initiating sites was prepared for the first time by the transesterification reaction of meso‐inositol with 2‐bromoisobutyryl bromide. A series of six‐armed (co)polymers, containing hydrophilic poly(di(ethylene glycol) methyl ether methacrylate) and amphiphilic poly(di(ethylene glycol) methyl ether methacrylate)‐block‐poly(methyl methacrylate) as the arms and meso‐inositol as the core, were obtained by low ppm atom transfer radical polymerization (ATRP) methods, utilizing 30 ppm of catalyst complex. Under Fe0‐mediated supplemental activators and reducing agents ATRP, Cu0‐mediated supplemental activators and reducing agents ATRP, Ag0‐mediated activators regenerated by electron transfer ATRP, and simplified electrochemically mediated ATRP conditions, polymerization proceeded on to high conversion while maintaining low dispersity (?  = 1.05–1.16) giving well‐defined six‐armed star (co)polymers. 1H NMR spectral results confirm the formation of new star‐shaped block (co)polymers. The absence of intermolecular coupling reactions during synthesis was confirmed by gel permeation chromatography analyses of the side chains of received star (co)polymers. These vitamin B8‐based star (co)polymers may find biomedical applications as thermo‐sensitive drug delivery systems, biosensors, and tissue engineering solutions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
The polymers poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate] (PDMDMA) and four‐armed PDMDMA with well‐defined structures were prepared by the polymerization of (2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate (DMDMA) in the presence of an atom transfer radical polymerization (ATRP) initiator system. The successive hydrolyses of the polymers obtained produced the corresponding water‐soluble polymers poly(2,3‐dihydroxypropyl acrylate) (PDHPA) and four‐armed PDHPA. The controllable features for the ATRP of DMDMA were studied with kinetic measurements, gel permeation chromatography (GPC), and NMR data. With the macroinitiators PDMDMA–Br and four‐armed PDMDMA–Br in combination with CuBr and 2,2′‐bipyridine, the block polymerizations of methyl acrylate (MA) with PDMDMA were carried out to afford the AB diblock copolymer PDMDMA‐b‐MA and the four‐armed block copolymer S{poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate]‐block‐poly(methyl acrylate)}4, respectively. The block copolymers were hydrolyzed in an acidic aqueous solution, and the amphiphilic diblock and four‐armed block copolymers poly(2,3‐dihydroxypropyl acrylate)‐block‐poly(methyl acrylate) were prepared successfully. The structures of these block copolymers were verified with NMR and GPC measurements. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3062–3072, 2001  相似文献   

15.
The synthesis of an AB20‐type heteroarm star polymer consisting of a polystyrene arm and 20‐arms of poly(methyl methacrylate) or poly(tert‐butyl acrylate) was carried out using the combination of nitroxide‐mediated polymerization (NMP) and atom transfer radical polymerization (ATRP). The NMP of styrene was carried out using mono‐6‐[4‐(1′‐(2″,2″,6″,6″‐tetramethyl‐1″‐piperidinyloxy)‐ethyl)benzamido]‐β‐cyclodextrin peracetate ( 1 ) to afford end‐functionalized polystyrene with an acetylated β‐cyclodextrin (β‐CyD) unit (prepolymer 2 ) with a number‐average molecular weight (Mn) of 11700 and a polydispersity (Mw/Mn) of 1.17. After deacetylation of prepolymer 2 , the resulting polymer was reacted with 2‐bromoisobutyric anhydride to give end‐functionalized polystyrene with 20(2‐bromoisobutyrol)s β‐CyD, macroinitiator 4 . The copper (I)‐mediated ATRP of methyl methacrylate (MMA) and tert‐butyl acrylate (tBA) was carried out using macroinitiator 4 . The resulting polymers were isolated by SEC fractionation to produce AB20‐type star polymers with a β‐CyD‐core, 5 . The well‐defined structure of 5 with weight‐average molecular weight (Mw)s of 13,500–65,300 and Mw/Mn's of 1.26–1.28 was demonstrated by SEC and light scattering measurements. The arm polymers were separated from 5 by destruction with 28 wt % sodium methoxide in order to analyze the details of their characteristic structure. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4271–4279, 2005  相似文献   

16.
Heterotelechelic polystyrene (PS), poly(tert‐butyl acrylate) (PtBA), and poly (methyl acrylate) (PMA), containing both azide and triisopropylsilyl (TIPS) protected acetylene end groups, were prepared in good control (Mw/Mn ≤ 1.24) by atom transfer radical polymerization (ATRP). The end groups were independently applied in two successive “click” reactions, that is: first the azide termini were functionalized and, after deprotection, the acetylene moieties were utilized for a second conjugation step. As a proof of concept, PS was consecutively functionalized with propargyl alcohol and azidoacetic acid, as confirmed by MALDI‐ToF MS. In addition, the same methodology was employed to modularly build up an ABC type triblock terpolymer. Size exclusion chromatography measurements demonstrated first coupling of PtBA to PS and, after the deprotection of the acetylene functionality on PS, connection of PMA, yielding a PMA‐b‐PS‐b‐PtBA triblock terpolymer. The reactions were driven to completion using a slight excess of azide functionalized polymers. Reduction of the residual azide groups into amines allowed easy removal of this excess of polymer by column chromatography. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2913–2924, 2007  相似文献   

17.
Using 2‐hydroxyethyl α‐bromoisobutyrate as initiator, atom transfer radical polymerization (ATRP) of tert‐butyl acrylate leads to poly(tert‐butyl acrylate) (PtBA) with a hydroxyl group at one and a bromine atom at the other end. Esterification of the hydroxyl group of these heterotelechelic polymers with acryloyl chloride yields PtBA (Mn = 3 060) with a polymerizable double bond at one end and a bromine atom at the other end which can act as an initiator in ATRP (“macroinimer”). Self‐condensing ATRP of such a macroinimer leads to hyperbranched or highly branched PtBA. The polymer was characterized by GPC viscosity measurements. Even at Mw = 78 800, a rather low polydispersity index of Mw/Mn = 2.6 was obtained. A significantly lower value for the Mark‐Houwink exponent (α = 0.47 compared to α = 0.80 for linear PtBA) indicates the compact nature of the branched macromolecules.  相似文献   

18.
Tetrakis bromomethyl benzene was used as a tetrafunctional initiator in the synthesis of four‐armed star polymers of methyl methacrylate via atom transfer radical polymerization (ATRP) with a CuBr/2,2 bipyridine catalytic system and benzene as a solvent. Relatively low polydispersities were achieved, and the experimental molecular weights were in agreement with the theoretical ones. A combination of 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated free‐radical polymerization and ATRP was used to synthesize various graft copolymers with polystyrene backbones and poly(t‐butyl methacrylate) grafts. In this case, the backbone was produced with a 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated stable free‐radical polymerization process from the copolymerization of styrene and p‐(chloromethyl) styrene. This polychloromethylated polymer was used as an ATRP multifunctional initiator for t‐butyl methacrylate polymerization, giving the desired graft copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 650–655, 2001  相似文献   

19.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

20.
This work reports the synthesis at 1 L scale of hyperbranched polyacrylates based upon acrylate/diacrylate monomers such as n-butyl acrylate (nBA)/1,6-hexanediol diacrylate (HDDA) and using atom transfer radical polymerization (ATRP). A FTIR-ATR immersion probe was used to monitor the polymerization reaction. The dynamics of the build-up of polymer structure was studied by off-line analysis of samples at different reaction times by size exclusion chromatography (SEC) with detection of refractive index (RI) and multi-angle laser light scattering (MALLS) signals, leading to molecular weight distribution and z-average radius of gyration. Kinetic measurements and observed parameters of the molecular architecture are compared with theoretical predictions which can be used to design new synthesis strategies to improve the homogeneity of hyperbranched polymers. Another goal of this study was elucidating the impact on polymerization of secondary reactions such as intramolecular cyclizations. For comparison purposes, FRP (conventional radical polymerization) of the same monomers is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号