首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structures and phase stability of the ternary alloys R3T4+xAl12−x (R=Y, Ce, Gd, U, Th; T=Fe, Ru) have been investigated using the interatomic potentials obtained by the lattice inversion method. These compounds crystallize in the hexagonal Gd3Ru4Al12-type structure and the calculated lattice constants correspond well with the experiments. Among the four different kinds of Al sites in the structure, the most preferential sites for Fe atoms or Ru atoms are 6h sites. The properties related to lattice vibration, such as the phonon density of states (DOS) and Debye temperature of R3Fe4Al12, have been evaluated. A qualitative analysis is carried out with the relevant potentials for the vibrational modes, which makes it possible to predict some thermodynamic properties.  相似文献   

2.
We report the synthesis of SrMn1−xGaxO3−δ perovskite compounds and describe the dependence of their phase stability and structural and physical properties over extended cation and oxygen composition ranges. Using special synthesis techniques derived from thermogravimetric measurements, we have extended the solubility limit of random substitution of Ga3+ for Mn in the cubic perovskite phase to x=0.5. In the cubic perovskite phase the maximum oxygen content is close to 3−x/2, which corresponds to 100% Mn4+. Maximally oxygenated solid solution compounds are found to order antiferromagnetically for x=0-0.4, with the transition temperature linearly decreasing as Ga content increases. Increasing the Ga content introduces frustration into the magnetic system and a spin-glass state is observed for SrMn0.5Ga0.5O2.67(3) below 12 K. These properties are markedly different from the long-range antiferromagnetic order below 180 K observed for the layer-ordered compound Sr2MnGaO5.50 with nominally identical chemical composition.  相似文献   

3.
The subsolidus phase relations of R2O3-CaO-CuO ternary systems (R=Nd, Sm, Gd, Tm) have been investigated by X-ray powder diffraction. All samples were synthesized at about 950° in air. There exists a ternary compound Ca14−xRxCu24O41 (x = 4 for R=Nd, Gd and x = 5 for R = Sm) and a ternary solid solution Ca2+xR2−xCu5O10 (R=Nd, Sm, Gd, Tm) with a wide composition range Δx of about 0.6. The compound Ca14−xRxCu24O41 possesses a layered orthorhombic structure and is isostructural to Sr14−xCaxCu24O41. The lattice parameters a and c of the compound are basically independent of the ionic radius of R, while the lattice parameter b and unit-cell volume V decrease substantially with the decrease of the ionic radii of R. The Ca2+xR2−xCu5O10 solid solution is isostructural to Ca2+xY2−xCu5O10, the structure of which is based on an orthorhombic “NaCuO2-type” subcell containing infinite one-dimensional chains of edge-shared square planar cuprate groups crosslinked by the layered cations Ca and R that locate in the inter-chain tunnels.  相似文献   

4.
Eighteen new intermetallic compounds RMn2TrxZn20−x (2<x<7; R=rare-earth metal; Tr=Al, In) were synthesized using low-melting mixtures of (Tr/Zn) as a solvent. Structural refinement using single-crystal X-ray diffraction data shows that the compounds are substituted variants of the cubic CeCr2Al20-type structure (Fd-3m, Z=8; unit cell parameters vary from a=14.1152(3)Å for YbMn2Al5.3Zn14.7 to a=14.8125(4)Å for SmMn2In5.9Zn14.1). The Zn and Tr elements show site preferences in the indium compounds, but not in the aluminum analogs. The substitution of trielide element for zinc modifies the valence electron count of the compounds to allow for the incorporation of Mn into the structure. Magnetic susceptibility data show no evidence of magnetic ordering down to 3 K.  相似文献   

5.
The effect of replacing Co3+ by Ga3+ and Fe3+ in the perovskite-related tetragonal phase Sr0.75Y0.25CoO2.625 with unit cell parameters: a=2ap, and c=4ap (314 phase) has been investigated. The 314 phase is formed by Sr0.75Y0.25Co1−xMxO2.625+δ, with x?0.375 for M=Ga and x?0.625 for M=Fe. High-resolution transmission electron microscopy and electron diffraction revealed frequent microtwinning in the iron-containing compounds, in contrast to the Ga-substituted 314 phases. Diffraction experiments and electron microscope images indicated that at higher Fe contents, 0.75?x?0.875, a disordered cubic perovskite structure forms. The crystal structures of Sr0.75Y0.25Co0.75Ga0.25O2.625 and Sr0.75Y0.25Co0.5Fe0.5O2.625+δ were refined using neutron powder diffraction data. It was found that the oxygen content of Sr0.75Y0.25Co0.5Fe0.5O2.625+δ is higher than in Fe-free 314 phase, so that δ corresponds to 0.076, whereas δ=0 in Sr0.75Y0.25Co0.75Ga0.25O2.625+δ. Magnetization measurements on the unsubstituted Sr0.7Y0.3CoO2.62 and Ga-substituted Sr0.75Y0.25Co0.75Ga0.25O2.625 compounds indicate the presence of a ferromagnetic-like contribution to the measured magnetization at 320 and 225 K, respectively, while replacing Co by Fe leads to the suppression of this contribution. A neutron diffraction study shows that the Sr0.75Y0.25Co0.5Fe0.5O2.625+δ compound is G-type antiferromagnetic at room temperature, whereas Sr0.75Y0.25Co0.75Ga0.25O2.625 does not exhibit magnetic ordering at room temperature.  相似文献   

6.
The crystal structures of ternary compounds RPt3−xSi1−y(R=Y, Tb, Dy, Ho, Er, Tm, Yb) have been elucidated from X-ray single crystal CCD data. All compounds are isotypic and crystallize in the tetragonal space group P4/mbm. The general formula RPt3−xSi1−y arises from defects: x≈0.20, y≈0.14. The crystal structure of RPt3−xSi1−y can be considered as a packing of four types of building blocks which derive from the CePt3B-type unit cell by various degrees of distortion and Pt, Si-defects.  相似文献   

7.
Series of compositions Bi2(M′xM1−x)4O9 with x=0.0, 0.1,…, 1.0 and M′/M=Ga/Al, Fe/Al and Fe/Ga were synthesized by dissolving appropriate amounts of corresponding metal nitrate hydrates in glycerine, followed by gelation, calcination and final heating at 800 °C for 24 h. The new compositions with M′/M=Ga/Al form solid-solution series, which are isotypes to the two other series M′/M=Fe/Al and Fe/Ga. The XRD data analysis yielded in all cases a linear dependence of the lattice parameters related on x. Rietveld structure refinements of the XRD patterns of the new compounds, Bi2(GaxAl1−x)4O9 reveal a preferential occupation of Ga in tetrahedral site (4 h). The IR absorption spectra measured between 50 and 4000 cm−1 of all systems show systematic shifts in peak positions related to the degree of substitution. Samples treated in 18O2 atmosphere (16 h at 800 °C, 200 mbar, 95% 18O2) for 18O/16O isotope exchange experiments show a well-separated IR absorption peak related to the M-18Oc-M vibration, where Oc denotes the common oxygen of two tetrahedral type MO4 units. The intensity ratio of M-18Oc/M-16Oc IR absorption peaks and the average crystal sizes were used to estimate the tracer diffusion coefficients of polycrystalline Bi2Al4O9 (D=2×10−22 m2s−1), Bi2Fe4O9 (D=5×10−21 m2s−1), Bi2(Ga/Al)4O9 (D=2×10−21 m2s−1) and Bi2Ga4O9 (D=2×10−20 m2s−1).  相似文献   

8.
A structural, magnetic and electronic study of the cobaltocuprate CoSr2Y2−xCexCu2Oδ (x=0.5-0.8) has been performed. All materials crystallise in the orthorhombic Cmcm symmetry space group in which chains of corner linked CoO4 tetrahedra run parallel to the 1 1 0 direction. An antiferromagnetic transition is observed for x=0.5-0.8; TM increases with x. A change in the dimensionality of the magnetic order occurs at x=0.8 as the interchain distance increases to a critical value. There is charge transfer between the cuprate planes and cobaltate layer as Ce doping increases, so that Co3+ is partially oxidised to Co4+ with a concomitant reduction in the valence of Cu. Superconductivity is not observed in any of the samples and a crossover from Mott to Efros and Shklovskii variable range hopping behaviour is evidenced as x increases from 0.5 to 0.8.  相似文献   

9.
The non-linear thermal expansion behaviour observed in Ce1−yPryO2−δ materials can be substantially controlled by Gd substitution. Coulometric titration shows that the charge compensation mechanism changes with increasing x, in the system GdxCe0.8−xPr0.2O2−δ. For x=0.15, charge compensation is by vacancy formation and destabilises the presence of Pr4+. At x=0.2, further Gd substitution is charge compensated by additionally raising the oxidation state of Pr rather than solely the creation of further oxygen ion vacancies. Oxygen concentration cell e.m.f. measurements in an oxygen/air potential gradient show that increasing Gd content decreases ionic and electronic conductivities. Ion transference numbers measured under these conditions show a positive temperature dependence, with typical values to=0.90,0.98 and 0.80 for x=0,0.15 and 0.2, respectively, at 950 °C. These observations are discussed in terms of defect association. Oxygen permeation fluxes are limited by both bulk ambipolar conductivity and surface exchange. However, the composition dependent trends in permeability are shown to be dominated by ambipolar conductivities, and limited by the level of electronic conductivity. At the highest temperatures, oxygen permeability of composition x=0.2 approaches that of composition x=0, Ce0.8Pr0.2O2−δ, with specific oxygen permeability values approximately 2×10−9 mol s−1 cm−1 at 950 °C, but offering much better thermal expansion properties.  相似文献   

10.
Nitrogen substituted yellow colored anatase TiO2−xNx and Fe-N co-doped Ti1−yFeyO2−xNx have been easily synthesized by novel hydrazine method. White anatase TiO2−δ and N/Fe-N-doped samples are semiconducting and the presence of ESR signals at g ∼1.994-2.0025 supports the oxygen vacancy and g∼4.3 indicates Fe3+ in the lattice. TiO2−xNx has higher conductivity than TiO2−x and Fe/Fe-N-doped anatase and the UV absorption edge of white TiO2−x extends in the visible region in N, Fe and Fe-N co-doped TiO2, which show, respectively, two band gaps at ∼3.25/2.63, ∼3.31/2.44 and 2.8/2.44 eV. An activation energy of ∼1.8 eV is observed in Arrhenius log resistivity vs. 1/T plots for all samples. All TiO2 and Fe-doped TiO2 show low 2-propanol photodegradation activity but have significant NO photodestruction capability, both in UV and visible regions, while standard Degussa P-25 is incapable in destroying NO in the visible region The mid-gap levels that these N and Fe-N-doped TiO2 consist may cause this discrepancy in their photocatalytic activities.  相似文献   

11.
Ba(R,R′)2CuO5 (R,R′=lanthanides and Y) plays an important role as a flux-pinning agent in enhancing the superconducting properties of the Ba2(R,R′)Cu3O6+x (R,R′=lanthanides and Y) coated conductors. Using X-ray diffraction and neutron diffraction, we found that the Ba(NdxY2−x)CuO5 solid solution adopts two structure types. In the Nd-rich region (1.8?x?2.0), the materials are of brown color (commonly referred to as the ‘brown phase’), and the structure is tetragonal with space group I4/mbm (no. 127). In the Y-rich region (0.0?x?1.4), the materials are green (commonly referred to as the ‘green phase’) and the structure is orthorhombic with space group Pnma (no. 62). A two-phase region (1.4<x<1.8) exists between the orthorhombic and tetragonal phases. The crystal chemistry and crystallography of the orthorhombic ‘green phase’ series, Ba(NdxY2−x)CuO5 (isostructural to BaY2CuO5), are discussed in this paper.  相似文献   

12.
A serial of samples in Y2O3-Ga2O3-Tm2O3 pseudo-ternary system are prepared by solid-state chemical reaction method. The range of solid solution in (Y1−xTmx)3GaO6 is 0<x<0.384. Powder X-ray diffraction shows that the compounds crystallize in Gd3GaO6 (Cmc21)-type structure. The solid solubilities of Y3+xGa5−xO12 (x=0-0.77) and Tm3+xGa5−xO12 (x=0-0.62) are 37.5-47.11 at% Y2O3, and 37.5-45.26 at% Tm2O3, respectively. PL spectra of Tm-doped Y3GaO6 show that there is a sharp blue emission at ∼456 nm from the 1D23F4 transition at room temperatures with two lifetimes (∼5 and ∼15 μs) and a narrow saturation range of PL intensity for the Tm3+ content from x=0.005 to 0.03. The sharp emission and long lifetime of (Y1−xTmx)3GaO6 indicate that Y3GaO6 is a potential phosphor and laser crystal host material.  相似文献   

13.
The synthesis and characterization of the pyrochlore solid solutions, Y2Ti2−xNbxO7−y, Lu2Ti2−xNbxO7−y, Y2Ti2−xTaxO7−y and Lu2TiTaO7−y (−0.4<y<0.5), is described. Synthesis at 1600 °C, and 10−5 Torr yields oxygen deficiency in all systems. All compounds are found to be paramagnetic and semiconducting, with the size of the local moments being less, in some cases substantially less, than the expected value for the number of nominally unpaired electrons present. Thermogravimetric analysis (TGA) shows that all compounds can be fully oxidized while retaining the pyrochlore structure, yielding oxygen rich pyrochlores as white powders. Powder neutron diffraction of Y2TiNbO7-based samples was done. Refinement of the data for oxygen deficient Y2TiNbO6.76 indicates the presence of a distribution of oxygen over the 8b and 48f sites. Refinement of the data for oxygen rich Y2TiNbO7.5 shows these sites to be completely filled, with an additional half filling of the 8a site. The magnetic and TGA data strongly suggest a preference for a Ti3+/(Nb,Ta)5+ combination, as opposed to Ti4+/(Nb,Ta)4+, in this pyrochlore family. In addition, the evidence clearly points to Ti3+ as the source of the localized moments, with no evidence for localized Nb4+ moments.  相似文献   

14.
Pyrolysis of rare earth (R) polyoxomolybdate, [R2(H2O)12Mo8O27xH2O (R=La, Nd and Sm), at 750°C for 2-8 h results in crystallization of R2Mo4O15 compounds. β-La2Mo4O15 crystallizes together with an α-form in monoclinic P21/a (No. 14), a=13.8893(5), b=13.0757(4), c=20.0927(8) Å, β=95.199(2)°, V=3634.1(2) Å3, Z=12, R1(I>2σ(I))=0.048, Rw (all data)=0.116. The structure is built up with {LaOn} (n=9, 10) and {MoOn′} (n′=4-6) polyhedral units. The {LaOn} units are polymerized into a linear {La6O39} chain, while the {MoOn} are connected together to form {Mo4O15} and {Mo7O26} groups. The structure can be related to the α-form by partial rearrangement of O atoms and small shifts of La and Mo atoms. The R2Mo4O15 (R=Nd and Sm) compounds are isomorphous with the previously reported R=Eu and Gd analogs, crystallizing in triclinic, (No. 2), a=9.4989(5) and 9.4076(7), b=11.0088(7) and 10.9583(8), c=11.5665(6) and 11.5234(8) Å, α=104.141(3) and 104.225(3), β=109.838(3) and 109.603(3), γ=108.912(3) and 108.999(3)°, V=987.3(1) and 970.5(1) Å3, Z=3, R1(I>2σ(I))=0.028 and 0.030, Rw (all data)= 0.079 and 0.094, respectively. The crystal structure is composed of {RO8} and {MoOn′} (n′=4-6) polyhedral units. The molybdate units are condensed to give a corrugated {Mo4O17} chain. The square-antiprismatic {RO8} units share their trigonal and square faces, forming {R2O13} and {R2O12} groups, respectively. A very short R?R distance (3.557(6) Å for R=Nd; 3.4956(6) Å for R=Sm) is achieved in the latter unusual {R2O12} group. A common cationic arrangement was found in all the structures in the R2Mo4O15 family: a R-R pair with the shortest separation and surrounding 12 Mo atoms. The symmetry of the cationic arrangement was reduced with an increase of atomic number of R, viz. La>Ce, Pr>Nd-Gd≈Tb, Ho.  相似文献   

15.
Electrical conductivity, thermopower and oxygen content were measured for La1−xSrxFeO3−δ (x=0.2, 0.5, 0.9) within the oxygen partial pressure range 10−4-0.5 atm and at temperatures 750-950 °C. The dominating charge carriers under these experimental conditions are electron holes. The results of oxygen nonstoichiometry measurements are used to estimate the concentration of holes and to analyze data on conductivity and thermopower. The changes in thermopower are described by the model assuming that the number of sites accessible for migration of holes is independent on oxygen content. The mobility of electron holes is calculated, and it is found to be virtually independent on temperature in the compositions with x<0.5 while compositions with x>0.5 exhibit thermally activated mobility and mobility values about 0.1 cm2 V−1 s−1 or smaller. It is suggested that the main contribution to the composition dependent variations in electron hole mobility are associated with Coulomb interactions at small x's, whereas at high degrees of doping the mobility of holes is most strongly affected by the increasing amount of oxygen vacancies.  相似文献   

16.
The physical properties including magnetic susceptibility, specific heat, and electrical resistivity of single crystals are reported for the compound CePd1+xAl6−x (x=0.5) which crystallizes in the tetragonal SrAu2Ga5-type structure (space group P4/mmm). The compound was grown from an excess of molten Al flux from the respective elements and the crystal structure was established from single-crystal X-ray diffraction. Anomalies in the low temperature specific heat Cp(T) and electrical resistivity ρ(T) show that the compound undergoes ferromagnetic order at TC=2.8 K. In the ordered state, CePd1.5Al5.5 displays heavy fermion behavior with a Sommerfeld coefficient of ca. 500 mJ/mol-K2.  相似文献   

17.
RMn2−xFexD6 compounds were obtained by applying a deuterium pressure of several kbar to RMn2−xFex compounds for x≤0.2 and R=Y, Er. These compounds are isostructural to RMn2D6 compounds and crystallize in a K2PtCl6 type structure with a random substitution of R and half the Mn atoms in the same 8c site whereas the other Mn atoms are located on the 4a site and surrounded by six D atoms (24e site). According to neutron powder diffraction analysis the Fe atoms are preferentially substituted on the 4a site. YMn2−xFexD6 compounds are paramagnetic and their molar susceptibility follows a modified Curie-Weiss law. ErMn2−xFexD6 compounds display a ferromagnetic behavior at 2 K, but their saturation magnetization (MS∼4.0 μB/f.u.) is half that of their parent compounds (MS∼8.0 μB/f.u.). The neutron diffraction patterns of ErMn1.8Fe0.2D6 display below 13 K both ferromagnetic and antiferromagnetic short range order, which can be related to a disordered distribution of Er moments. The paramagnetic temperatures of ErMn2−xFexD6 compounds are negative and decrease versus the Fe content whereas they are positive and increase for their parent compounds.  相似文献   

18.
B-site disordered RFe0.5V0.5O3 compounds, with R=La, Nd, Eu and Y, have been prepared by solid-state reaction technique and their structures and magnetic properties have been investigated through X-ray powder diffraction, time-of-flight neutron powder diffraction and magnetization measurements at temperatures ranging from 5 to 700 K. The four compounds can be described as distorted perovskites with space group symmetry Pbnm and a+bb tilt system. The studied compounds also show antiferromagnetic ordering with Neel temperatures of 299, 304, 304, and 335 K respectively. The magnetic structures of R=La, Nd and Y compounds were determined from the neutron powder diffraction as Gz with observed magnetic moments of 2.55, 2.54 and 2.69μB at 30, 40 and 40 K, respectively.  相似文献   

19.
Aluminum incorporation in the rhombohedrally distorted perovskite lattice of (La0.5Sr0.5)1−xFe1−yAlyO3−δ (x=0-0.05, y=0-0.30) decreases the unit cell volume and partial ionic and p-type electronic conductivities, while the oxygen nonstoichiometry and thermal expansion at 900-1200 K increase on doping. The creation of A-site cation vacancies has an opposite effect on the transport properties of Al-substituted ceramics. The maximum A-site deficiency tolerated by the (La,Sr)(Fe,Al)O3−δ structure is however limited, close to 3-4%. The Mössbauer spectroscopy revealed progressive localization of electron holes and a mixed charge-compensation mechanism, which results in higher average oxidation state of iron when Al3+ concentration increases. The average thermal expansion coefficients of (La0.5Sr0.5)1−xFe1−yAlyO3−δ are (12.2-13.0)×10−6 K−1 at 300-900 K and (20.1-30.0)×10−6 K−1 at 900-1200 K in air. The steady-state oxygen permeability (OP) of dense Al-containing membranes is determined mainly by the bulk ionic conductivity. The ion transference numbers at 973-1223 K in air, calculated from the oxygen permeation and faradaic efficiency (FE) data, vary in the range 1×10−4-3×10−3, increasing with temperature.  相似文献   

20.
The aim of this work was to determine structural parameters of the Y10−xLaxW2O21 (x=0-10) solid solution series and investigate their electric properties. Crystallographic data shows a gradual increase in symmetry with increasing La content, as the structure evolves from orthorhombic, Y10W2O21, towards the pseudo-cubic structure of Y5La5W2O21. The solubility limit of La2O3 was found to be 50% (x=5). Above this level two phases were observed, La6W2O15 and (La,Y)10+xW2−xO21−δ. The conductivity of Y rich samples was very low, with σ of the order 2×10−5-5×10−5 S cm−1 at 1000 °C, whilst ionic conductivity was observed for most La rich doped samples. The highest conductivity was observed for La10W2O21 and its doped analogues, at 1×10−3-5×10−3 S cm−1 at 1000 °C. Unit cell parameters were determined as a function of temperature from 0 to 1000°C, and thermal expansion of these materials was determined from temperature studies carried out at the Australian Synchrotron facility in Melbourne, Victoria, Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号