首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, a rate-independent, finite-deformation-based crystal mechanics constitutive model for martensitic reorientation and detwinning in shape-memory alloys has been developed by Thamburaja [Thamburaja, P., 2005. Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. Journal of the Mechanics and Physics of Solids 53, 825–856] and implemented in the ABAQUS/Explicit [Abaqus reference manuals. 2005. Providence, RI] finite-element program. In this work, we show that the aforementioned model is able to quantitatively predict the experimental response of an initially textured and martensitic polycrystalline Ti–Ni rod under a variety of uniaxial and multi-axial stress states. By fitting the material parameters in the model to the stress–strain response in simple tension, the constitutive model predicts the stress–strain curves for experiments conducted under simple compression, torsion, proportional-loading tension–torsion, and path-change tension–torsion loading conditions to good accord. Furthermore the constitutive model also reproduces the force–displacement response for an indentation experiment to reasonable accuracy.  相似文献   

2.
This paper develops a three-dimensional theory for the superelastic response of single-crystal shape-memory materials. Since energetic considerations play a major role in the phase transformations associated with the superelastic response, we have developed the theory within a framework that accounts for the laws of thermodynamics. We have implemented a special set of constitutive equations resulting from the general theory in a finite-element computer program, and using this program have simulated the superelastic response of a single crystal Ti-Ni shape-memory alloy under both isothermal and thermo-mechanically coupled situations. Both manifestations of superelasticity—stress-strain response at fixed temperature and strain-temperature response at fixed stress—are explored. The single-crystal constitutive-model is also used to discuss the superelastic response of a polycrystalline aggregate with a random initial crystallographic texture. The overall features of the results from the numerical simulations are found to be qualitatively similar to existing experimental results on Ti-Ni.  相似文献   

3.
In this work we develop a finite-deformation-based, thermo-mechanically-coupled and non-local phenomenological theory for polycrystalline shape-memory alloys (SMAs) capable of undergoing austenite ↔ martensite phase transformations. The constitutive model is developed in the isotropic plasticity setting using standard balance laws, thermodynamic laws and the theory of micro-force balance (Fried and Gurtin, 1994). The constitutive model is then implemented in the ABAQUS/Explicit (2009) finite-element program by writing a user-material subroutine. Material parameters in the constitutive model were fitted to a set of superelastic experiments conducted by Thamburaja and Anand (2001) on a polycrystalline rod Ti–Ni. With the material parameters calibrated, we show that the experimental stress-biased strain–temperature-cycling and shape-memory effect responses are qualitatively well-reproduced by the constitutive model and the numerical simulations. We also show the capability of our constitutive mode in studying the response of SMAs undergoing coupled thermo-mechanical loading and also multi-axial loading conditions by studying the deformation behavior of a stent unit cell.  相似文献   

4.
In this work, we develop an isotropic-plasticity-based constitutive model for initially martensitic shape-memory alloys (SMA) which exhibit martensitic reorientation and the shape-memory effect. The constitutive model is then implemented in the [Abaqus reference manuals. 2006. Providence, R.I.] finite-element program by writing a user-material subroutine. The results from the constitutive model and numerical procedure are then compared to representative physical experiments conducted on polycrystalline rod and sheet Ti–Ni. The constitutive model and the numerical simulations are able to reproduce the stress–strain responses from these physical experiments to good accuracy. Finally, two different boundary value problems utilizing the one-way shape-memory effect are studied: (a) the deformation of an arterial stent, and (b) a micro-clamper. We show that our constitutive model can be used to model the response of the aforementioned boundary value examples.  相似文献   

5.
6.
Based on the knowledge of the anisotropy associated with the martensitic transformations obtained from tension/compression experiments with oriented CuAlNi single crystals, a simple constant stress averaging approach is employed to model the SMA polycrystal deformation behaviors. Only elastic and inelastic strains due to the martensitic transformation, variant reorientations in the martensite phase and martensite to martensite transformations in thermomechanical loads are considered. The model starts from theoretical calculation of the stress-temperature transformation conditions and their orientation dependence from basic crystallographic and material attributes of the martensitic transformations. Results of the simulations of the NiTi, NiAl, and Cu-based SMA polycrystals in stress–strain tests are shown. It follows that SMA polycrystals, even with randomly oriented grains, typically exhibit tension/compression asymmetry of the shape of the pseudoelastic σε curves in transformation strain, transformation stress, hysteresis widths, character of the pseudoelastic flow and in the slope of temperature dependence of the transformation stresses. It is concluded that some macroscopic features of the SMA polycrystal behaviors originate directly from the crystallography of the undergoing MT's. The model shows clearly the crystallographic origin of these phenomena by providing a link from the crystallographic and material attributes of martensitic transformations towards the macroscopic σεT behaviors of SMA polycrystals.  相似文献   

7.
A constitutive model to describe macroscopic elastic and transformation behaviors of polycrystalline shape-memory alloys is formulated using an internal variable thermodynamic framework. In a departure from prior phenomenological models, the proposed model treats initiation, growth kinetics, and saturation of transformation distinctly, consistent with physics revealed by recent multi-scale experiments and theoretical studies. Specifically, the proposed approach captures the macroscopic manifestations of three micromechanial facts, even though microstructures are not explicitly modeled: (1) Individual grains with favorable orientations and stresses for transformation are the first to nucleate martensite, and the local nucleation strain is relatively large. (2) Then, transformation interfaces propagate according to growth kinetics to traverse networks of grains, while previously formed martensite may reorient. (3) Ultimately, transformation saturates prior to 100% completion as some unfavorably-oriented grains do not transform; thus the total transformation strain of a polycrystal is modest relative to the initial, local nucleation strain. The proposed formulation also accounts for tension–compression asymmetry, processing anisotropy, and the distinction between stress-induced and temperature-induced transformations. Consequently, the model describes thermoelastic responses of shape-memory alloys subject to complex, multi-axial thermo-mechanical loadings. These abilities are demonstrated through detailed comparisons of simulations with experiments.  相似文献   

8.
A 3-D constitutive model for polycrystalline shape memory alloys (SMAs), based on a modified phase transformation diagram, is presented. The model takes into account both direct conversion of austenite into detwinned martensite as well as the detwinning of self-accommodated martensite. This model is suitable for performing numerical simulations on SMA materials undergoing complex thermomechanical loading paths in stress–temperature space. The model is based on thermodynamic potentials and utilizes three internal variables to predict the phase transformation and detwinning of martensite in polycrystalline SMAs. Complementing the theoretical developments, experimental data are presented showing that the phase transformation temperatures for the self-accommodated martensite to austenite and detwinned martensite to austenite transformations are different. Determination of some of the SMA material parameters from such experimental data is also discussed. The paper concludes with several numerical examples of boundary value problems with complex thermomechanical loading paths which demonstrate the capabilities of the model.  相似文献   

9.
A new model for the behavior of polycrystalline shape memory alloys (SMA), based on a statically constrained microplane theory, is proposed. The new model can predict three-dimensional response by superposing the effects of inelastic deformations computed on several planes of different orientation, thus reproducing closely the actual physical behavior of the material. Due to the structure of the microplane algorithm, only a one-dimensional constitutive law is necessary on each plane. In this paper, a simple constitutive law and a robust kinetic expression are used as the local constitutive law on the microplane level. The results for SMA response on the macroscale are promising: simple one-dimensional response is easily reproduced, as are more complex features such as stress-strain subloops and tension-compression asymmetry. A key feature of the new model is its ability to accurately represent the deviation from normality exhibited by SMAs under nonproportional loading paths.  相似文献   

10.
We present a micromechanical model for polycrystalline shape-memory alloys which is capable of reproducing important aspects of the material behavior such as pseudoelasticity, pseudoplasticity, tension–compression asymmetry and the influence of texture inhomogeneities which may occur from the production process of components or specimens. Our model is based on the optimization of the material’s free energy density and uses a dissipation ansatz which is homogeneous of first order. Considering the full anisotropic material properties of both the austenite and the martensite phase, we compute the evolution of the orientation distributions of austenite and martensite as internal variables of our model.   相似文献   

11.
Porous shape-memory alloys are usually brittle due to the presence of various nickel-titanium intermetallic compounds that are produced in the course of most commonly used synthesizing techniques. We consider here a porous NiTi shape-memory alloy (SMA), synthesized by spark-plasma sintering, that is ductile and displays full shape-memory effects over the entire appropriate range of strains. The porosity however is only 12% but the basic synthesizing technique has potential for producing shape-memory alloys with greater porosity that still are expected to display superelasticity and shape-memory effects. The current material has been characterized experimentally using quasi-static and dynamic tests at various initial temperatures, mostly within the superelastic strain range, but also into the plastic deformation regime of the stress-induced martensite phase. To obtain a relatively constant strain rate in the high strain-rate tests, a novel pulse-shaping technique is introduced. The results of the quasi-static experiments are compared with the predictions by a model that can be used to calculate the stress-strain response of porous NiTi shape-memory alloys during the austenite-to-martensite and reverse phase transformations in uniaxial quasi-static loading and unloading at constant temperatures. In the austenite-to-martensite transformation, the porous shape-memory alloy is modeled as a three-phase composite with the parent phase (austenite) as the matrix and the product phase (martensite) and the voids as the embedded inclusions, reversing the roles of austenite and martensite during the reverse transformation from fully martensite to fully austenite phase. The criterion of the stress-induced martensitic transformation and its reversal is based on equilibrium thermodynamics, balancing the thermodynamic driving force for the phase transformation, associated with the reduction of Gibbs’ free energy, with the resistive force corresponding to the required energy to create new interface surfaces and to overcome the energy barriers posed by various microstructural obstacles. The change in Gibbs’ free energy that produces the driving thermodynamic force for phase transformation is assumed to be due to the reduction of mechanical potential energy corresponding to the applied stress, and the reduction of the chemical energy corresponding to the imposed temperature. The energy required to overcome the resistance imposed by various nano- and subnano-scale defects and like barriers, is modeled empirically, involving three constitutive constants that are then fixed based on the experimental data. Reasonably good correlation is obtained between the experimental and model predictions.  相似文献   

12.
13.
This paper deals with the evolution of inhomogeneous deformation in shape memory alloy strips and mild steel strips under uniaxial tension. New experiments on NiTi strips, which initially are in an austenitic phase, show that at a critical stress level martensite nucleates in sharp bands inclined at 55° to the axis of loading. Under prescribed end displacement martensite subsequently spreads either by steady-state propagation of inclined transition fronts or via a criss-cross pattern of finger-like features. Similar events have been reported in the literature regarding the evolution of Lüders bands in fine grained steel strips and wires. The similarity of macroscopic events, despite the different mechanisms of instability at the micro-level, prompted us to approximate the material behavior as a finitely deforming elasto-plastic solid with a trilinear up-down-up nominal stress-strain response. Two such stress-strain responses were used in finite element simulations of strip tension tests. In the first the true stress-strain response maintains its stability and in the second the intermediate branch has a negative slope. While both material models produced inhomogeneous deformations with features similar to those of the experiments, the larger initiation peak associated with the second gave results which closely resembled specific experiments. The numerical simulations confirmed that the evolution of events seen in experiments on SMAs and mild steels is strongly influenced by overall geometric (structural) effects. Furthermore, the success of this simple continuum constitutive model strongly suggests that continuum level events remain dominant players in such fine grained materials.  相似文献   

14.
泡沫铝的单向力学行为   总被引:15,自引:2,他引:13  
王曦  虞吉林 《实验力学》2001,16(4):438-443
本文对不同孔径的开孔泡沫铝材料的单向拉伸性能和单向压缩性能进行了研究,揭示了泡沫铝材料的变形机理,并且发现相对密度不是确定材料力学属性的唯一参数,孔径大小对材料的力学性能也有一定的影响。基于实验数据,我们讨论了材料的宏观力学性能和微观结构的联系,并利用Ramberg-Osgood模型描述了材料的单轴拉伸一维应力应变关系。  相似文献   

15.
A viscoplastic constitutive model for Hastelloy-X single crystal material is developed based on crystallographic slip theory. The constitutive model was constructed for use in a viscoplastic self-consistent model for isotropic Hastelloy-X polycrystalline material, which has been described in a recent publication. It is found that, by using the slip geometry known from the metallurgical literature, the anisotropic response can be accurately predicted. The model was verified by using tension and torsion data taken at 982°C (1800°F). The constitutive model used on each slip system is a simple unified visoplastic power law model in which weak latent interaction effects are taken into account. The drag stress evolution equations for the octahedral system are written in a hardening/recovery format in which both hardening and recovery depend on separate latent interaction effects between the octahedral crystallographic slip systems. The strain rate behavior of the single crystal material is well correlated by the constitutive model in uniaxial and torsion tests, but it is necessary to include latent information effects between the octahedral slip systems in order to obtain the best possible representation of biaxial cyclic strain rate behavior. Finally, it was observed that the single crystal exhibited dynamic strain aging at 871°C (1600°F). Similar dynamic strain aging occurs at 649°C (1200°F) in the polycrystalline version of the alloy.  相似文献   

16.
Ti–6Al–4V is a dual phase material with range of possible complex microstructures. It is well known that mechanical behavior of Ti–6Al–4V is significantly affected by its texture and microstructure morphology. A three-dimensional microstructure-based constitutive model for monotonic and cyclic deformation of duplex Ti–6Al–4V is developed and implemented. The model includes length scale effects associated with dislocation interactions with different microstructure features, and is calibrated using polycrystalline finite element simulations to fit the measured macroscopic responses (overall stress–strain behavior) of a duplex heat treated Ti–6Al–4V alloy subjected to a complex cyclic loading history. Representative microstructures are simulated using a three-dimensional finite element mesh with periodic boundary conditions imposed in all directions. The measured orientation and misorientation distributions of grains of this duplex Ti–6Al–4V are considered, and similar probability density distributions of the crystallographic orientations are assigned to the finite element mesh. The misorientation distributions are then fit using the simulated annealing method. Effects of microstructural features are examined and compared with the experimental data in terms of their influence on the material yield strength. The results are shown to be in good agreement with the experimental observations.  相似文献   

17.
The purpose of the present study is to thoroughly understand the stress–strain behavior of polycrystalline NiTi deformed under tension versus compression. To do this, a micro-mechanical model is used which incorporates single crystal constitutive relationships and experimentally measured polycrystalline texture into the self-consistent formulation. For the first time it is quantitatively demonstrated that texture measurements coupled with a micro-mechanical model can accurately predict tension/compression asymmetry in NiTi shape memory alloys. The predicted critical transformation stress levels and transformation stress–strain slopes under both tensile and compressive loading are consistent with experimental results. For textured polycrystalline NiTi deformed under tension it is demonstrated that the martensite evolution is very abrupt, consistent with the Luders type deformation experimentally observed. The abrupt transformation under tension is attributed to the fact that the majority of the grains are oriented along the [111] crystallographic direction, which is soft under tensile loading. Since single crystals of the [111] orientation are hard under compression it is also demonstrated that under compression the martensite in textured polycrystalline NiTi evolves relatively slower.  相似文献   

18.
19.
Elastomeric materials experience stretch-induced softening as evidenced by a pre-stretched material exhibiting a significantly more compliant response than that of the virgin material. In this paper, we propose a fully three-dimensional constitutive model for the observed softening of the stress-strain behavior. The model adopts the Mullins and Tobin concept of an evolution in the underlying hard and soft domain microstructure whereby the effective volume fraction of the soft domain increases with stretch. The concept of amplified strain is then utilized in a mapping of the macroscopic deformation to the deformation experienced by the soft domain. The strain energy density function of the material is then determined from the strain energy of the soft domain and thus evolves as the volume fraction of soft domain evolves with deformation. Comparisons of model results for cyclic simple extension with the experimental data of Mullins and Tobin show the efficacy of the model and suggest that an evolution in the underlying soft/hard domain microstructure of the elastomer captures the fundamental features of stretch-induced softening. Model simulations of the cyclic stress-strain behavior and corresponding evolution in structure with strain for uniaxial tension, biaxial tension and plane strain tension are also presented and demonstrate three-dimensional features of the constitutive model.  相似文献   

20.
In this paper, the coupled thermo-mechanical response of shape memory alloy (SMA) bars and wires in tension is studied. By using the Gibbs free energy as the thermodynamic potential and choosing appropriate internal state variables, a three-dimensional phenomenological macroscopic constitutive model for polycrystalline SMAs is derived. Taking into account the effect of generated (absorbed) latent heat during the forward (inverse) martensitic phase transformation, the local form of the first law of thermodynamics is used to obtain the energy balance relation. The three-dimensional coupled relations for the energy balance in the presence of the internal heat flux and the constitutive equations are reduced to a one-dimensional problem. An explicit finite difference scheme is used to discretize the governing initial-boundary-value problem of bars and wires with circular cross-sections in tension. Considering several case studies for SMA wires and bars with different diameters, the effect of loading–unloading rate and different boundary conditions imposed by free and forced convections at the surface are studied. It is shown that the accuracy of assuming adiabatic or isothermal conditions in the tensile response of SMA bars strongly depends on the size and the ambient condition in addition to the rate dependency that has been known in the literature. The data of three experimental tests are used for validating the numerical results of the present formulation in predicting the stress–strain and temperature distribution for SMA bars and wires subjected to axial loading–unloading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号