首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文给出求解具有等式约束和不等式约束的非线性优化问题的一阶信息和二阶信息的两个微分方程系统,问题的局部最优解是这两个微分方程系统的渐近稳定的平衡点,给出了这两个微分方程系统的Euler离散迭代格式并证明了它们的收敛性定理,用龙格库塔法分别求解两个微分方程系统.我们构造了搜索方向由两个微分系统计算,步长采用Armijo线搜索的算法分别求解这个约束最优化问题,在局部Lipschitz条件下基于二阶信息的微分方程系统的迭代方法具有二阶的收敛速度。我们给出的数值结果表明龙格库塔的微分方程算法具有较好的稳定性和更高的精确度,求解二阶信息的微分方程系统的方法具有更快的收敛速度.  相似文献   

2.
New fully implicit stochastic Runge–Kutta schemes of weak order 1 or 2 are proposed for stochastic differential equations with sufficiently smooth drift and diffusion coefficients and a scalar Wiener process, which are derivative-free and which are A-stable in mean square for a linear test equation in some general settings. They are sought in a transparent way and their convergence order and stability properties are confirmed in numerical experiments.  相似文献   

3.
金丽  张立卫  肖现涛 《计算数学》2007,29(2):163-176
本文构造的求解非线性优化问题的微分方程方法包括两个微分方程系统,第一个系统基于问题函数的一阶信息,第二个系统基于二阶信息.这两个系统具有性质:非线性优化问题的局部最优解是它们的渐近稳定的平衡点,并且初始点是可行点时,解轨迹都落于可行域中.我们证明了两个微分方程系统的离散迭代格式的收敛性定理和基于第二个系统的离散迭代格式的局部二次收敛性质.还给出了基于两个系统的离散迭代方法的数值算例,数值结果表明基于二阶信息的微分方程方法速度更快.  相似文献   

4.
An approach to solve constrained minimization problems is to integrate a corresponding index 2 differential algebraic equation (DAE). Here, corresponding means that the ω-limit sets of the DAE dynamics are local solutions of the minimization problem. In order to obtain an efficient optimization code, we analyze the behavior of certain Runge–Kutta and linear multistep discretizations applied to these DAEs. It is shown that the discrete dynamics reproduces the geometric properties and the long-time behavior of the continuous system correctly. Finally, we compare the DAE approach with a classical SQP-method.  相似文献   

5.
In this paper we study numerical methods for addressing hybrid fuzzy differential equations by an application of the Runge–Kutta method for fuzzy differential equations using the Seikkala derivative. We state a convergence result and give a numerical example to illustrate the theory.  相似文献   

6.
求解非线性规划问题的两个微分方程系统   总被引:3,自引:1,他引:2  
本文给出Evtushenko与Zhadan(1974)提出的求解数学规划问题微分方程系统的两个校正形式,它们可用于求解具有等式和不等式约束的非线性规化问题。第一个校正系统拓宽了Evtushenko与Zhadan微分方程方法;第二个校正系统通过引入新的方程系统导出乘子函数得到,它无需使用Evtushenko与Zhadan所用的那样强的约束规范。我们建立了这两个微分方程方法及其离散迭代方法的收敛性定理,给出了基于第二个微分方程离散格式的数值算法及其某些数值结果。  相似文献   

7.
Summary A fully discrete finite element method for the Cahn-Hilliard equation with a logarithmic free energy based on the backward Euler method is analysed. Existence and uniqueness of the numerical solution and its convergence to the solution of the continuous problem are proved. Two iterative schemes to solve the resulting algebraic problem are proposed and some numerical results in one space dimension are presented.  相似文献   

8.
Traditionally, explicit numerical algorithms have not been used with stiff ordinary differential equations (ODEs) due to their stability. Implicit schemes are usually very expensive when used to solve systems of ODEs with very large dimension. Stabilized Runge‐Kutta methods (also called Runge–Kutta–Chebyshev methods) were proposed to try to avoid these difficulties. The Runge–Kutta methods are explicit methods with extended stability domains, usually along the negative real axis. They can easily be applied to large problem classes with low memory demand, they do not require algebra routines or the solution of large and complicated systems of nonlinear equations, and they are especially suited for discretizations using the method of lines of two and three dimensional parabolic partial differential equations. In Martín‐Vaquero and Janssen [Comput Phys Commun 180 (2009), 1802–1810], we showed that previous codes based on stabilized Runge–Kutta algorithms have some difficulties in solving problems with very large eigenvalues and we derived a new code, SERK2, based on sixth‐order polynomials. Here, we develop a new method based on second‐order polynomials with up to 250 stages and good stability properties. These methods are efficient numerical integrators of very stiff ODEs. Numerical experiments with both smooth and nonsmooth data support the efficiency and accuracy of the new algorithms when compared to other well‐known second‐order methods such as RKC and ROCK2. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

9.
This work is concerned with numerical schemes for stochastic optimal control problems (SOCPs) by means of forward backward stochastic differential equations (FBSDEs). We first convert the stochastic optimal control problem into an equivalent stochastic optimality system of FBSDEs. Then we design an efficient second order FBSDE solver and an quasi-Newton type optimization solver for the resulting system. It is noticed that our approach admits the second order rate of convergence even when the state equation is approximated by the Euler scheme. Several numerical examples are presented to illustrate the effectiveness and the accuracy of the proposed numerical schemes.  相似文献   

10.
In this paper, a class of weighted essentially non-oscillatory (WENO) schemes with a Lax–Wendroff time discretization procedure, termed WENO-LW schemes, for solving Hamilton–Jacobi equations is presented. This is an alternative method for time discretization to the popular total variation diminishing (TVD) Runge–Kutta time discretizations. We explore the possibility in avoiding the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems with strong discontinuous derivative. As a result, comparing with the original WENO with Runge–Kutta time discretizations schemes (WENO-RK) of Jiang and Peng [G. Jiang, D. Peng, Weighted ENO schemes for Hamilton–Jacobi equations, SIAM J. Sci. Comput. 21 (2000) 2126–2143] for Hamilton–Jacobi equations, the major advantages of WENO-LW schemes are more cost effective for certain problems and their compactness in the reconstruction. Extensive numerical experiments are performed to illustrate the capability of the method.  相似文献   

11.
In this paper we design higher-order time integrators for systems of stiff ordinary differential equations. We combine implicit Runge–Kutta and BDF methods with iterative operator-splitting methods to obtain higher-order methods. The idea of decoupling each complicated operator in simpler operators with an adapted time scale allows to solve the problems more efficiently. We compare our new methods with the higher-order fractional-stepping Runge–Kutta methods, developed for stiff ordinary differential equations. The benefit is the individual handling of each operator with adapted standard higher-order time integrators. The methods are applied to equations for convection–diffusion reactions and we obtain higher-order results. Finally we discuss the applications of the iterative operator-splitting methods to multi-dimensional and multi-physical problems.  相似文献   

12.
In this paper, by composite previous-current-step idea, we propose two numerical schemes for solving the Itô stochastic differential systems. Our approaches, which are based on the Euler–Maruyama method, solve stochastic differential systems with strong sense. The mean-square convergence theory of these methods are analyzed under the Lipschitz and linear growth conditions. The accuracy and efficiency of the proposed numerical methods are examined by linear and nonlinear stochastic differential equations.  相似文献   

13.
Abstract

In this article numerical methods for solving hybrid stochastic differential systems of Itô-type are developed by piecewise application of numerical methods for SDEs. We prove a convergence result if the corresponding method for SDEs is numerically stable with uniform convergence in the mean square sense. The Euler and Runge–Kutta methods for hybrid stochastic differential equations are specifically described and the order of the error is given for the Euler method. A numerical example is given to illustrate the theory.  相似文献   

14.
This paper aims to investigate the numerical approximation of a general second order parabolic stochastic partial differential equation(SPDE) driven by multiplicative and additive noise. Our main interest is on such SPDEs where the nonlinear part is stronger than the linear part, usually called stochastic dominated transport equations. Most standard numerical schemes lose their good stability properties on such equations, including the current linear implicit Euler method. We discretize the SPDE in space by the finite element method and propose a novel scheme called stochastic Rosenbrock-type scheme for temporal discretization. Our scheme is based on the local linearization of the semi-discrete problem obtained after space discretization and is more appropriate for such equations. We provide a strong convergence of the new fully discrete scheme toward the exact solution for multiplicative and additive noise and obtain optimal rates of convergence. Numerical experiments to sustain our theoretical results are provided.  相似文献   

15.
In this article, we study the numerical solutions of a class of complex partial differential equation (PDE) systems with free boundary conditions. This problem arises naturally in pricing American options with regime‐switching, which adds significant complexity in the PDE systems due to regime coupling. Developing efficient numerical schemes will have important applications in computational finance. We propose a new method to solve the PDE systems by using a penalty method approach and an exponential time differencing scheme. First, the penalty method approach is applied to convert the free boundary value PDE system to a system of PDEs over a fixed rectangular region for the time and spatial variables. Then, a new exponential time differncing Crank–Nicolson (ETD‐CN) method is used to solve the resulting PDE system. This ETD‐CN scheme is shown to be second order convergent. We establish an upper bound condition for the time step size and prove that this ETD‐CN scheme satisfies a discrete version of the positivity constraint for American option values. The ETD‐CN scheme is compared numerically with a linearly implicit penalty method scheme and with a tree method. Numerical results are reported to illustrate the convergence of the new scheme. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

16.
This work investigates strong convergence of numerical schemes for nonlinear multiplicative noise driving stochastic partial differential equations under some weaker conditions imposed on the coefficients avoiding the commonly used global Lipschitz assumption in the literature. Space-time fully discrete scheme is proposed, which is performed by the finite element method in space and the implicit Euler method in time. Based on some technical lemmas including regularity properties for the exact solution of the considered problem, strong convergence analysis with sharp convergence rates for the proposed fully discrete scheme is rigorously established.  相似文献   

17.
The Adomian decomposition method (ADM) is treated as an algorithm for approximating the solutions of the Lorenz and Chen systems in a sequence of time intervals, i.e. the classical ADM is converted into a hybrid analytical–numerical method. Comparisons with the seventh- and eighth-order Runge–Kutta method (RK78) reconfirm the very high accuracy of the hybrid analytical–numerical ADM.  相似文献   

18.
A general class of stochastic Runge–Kutta methods for Itô stochastic differential equation systems w.r.t. a one-dimensional Wiener process is introduced. The colored rooted tree analysis is applied to derive conditions for the coefficients of the stochastic Runge–Kutta method assuring convergence in the weak sense with a prescribed order. Some coefficients for new stochastic Runge–Kutta schemes of order two are calculated explicitly and a simulation study reveals their good performance.  相似文献   

19.
研究了一类带有限延迟的随机泛函微分方程的Euler-Maruyama(EM)逼近,给出了该方程的带随机步长的EM算法,得到了随机步长的两个特点:首先,有限个步长求和是停时;其次,可列无限多个步长求和是发散的.最终,由离散形式的非负半鞅收敛定理,得到了在系数满足局部Lipschitz条件和单调条件下,带随机步长的EM数值解几乎处处收敛到0.该文拓展了2017年毛学荣关于无延迟的随机微分方程带随机步长EM数值解的结果.  相似文献   

20.
Adjoint techniques are a common tool in the numerical treatment of optimal control problems. They are used for efficient evaluations of the gradient of the objective in gradient-based optimization algorithms. Different adjoint techniques for the optimal control of Burgers equation with Neumann boundary control are studied. The methods differ in the point in the numerical algorithm at which the adjoints are incorporated. Discretization methods for the continuous adjoint are discussed and compared with methods applying the application of the discrete adjoint. At the example of the implicit Euler method and the Crank Nicolson method it is shown that a discretization for the adjoint problem that is adjoint to the discretized optimal control problem avoids additional errors in gradient-based optimization algorithms. The approach of discrete adjoints coincides with that of automatic differentiation tools (AD) which provide exact gradient calculations on the discrete level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号