首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

2.
The compounds (NMe4)5[As2Mo8V4AsO40] · 3 H2O 2a , (NH4)21[H3Mo57V6(NO)6O183(H2O)18] · 65 H2O 3a , (NH2Me2)18(NH4)6[Mo57V6(NO)6O183(H2O)18] · 14 H2O 3b and (NH4)12[Mo36(NO)4O108(H2O)16] · 33 H2O 4a ( 3a and 4a were not correctly reported in the literature regarding to their composition, structures and the oxidation states of the metal centres) which contain large isolated anionic species, have been prepared (among them 3a, 3b , and 4a in rather high yield) and characterized by complete crystal structure analysis as well as IR/Raman, UV/VIS/NIR, ESR spectroscopy and magnetic susceptibility measurements, redox titrations, bond valence sum calculations, elemental analyses and thermogravimetric studies. Perspectives for polyoxometalate chemistry referring to the synthesis of “extremely” large nanoscaled species are discussed, together with the occurrence of a large transferable {Mo17} building block in the compounds 3a, 3b and 4a which also exists in the corresponding iron compound Na3(NH4)12[H15Mo57Fe6(NO)6O183(H2O)18] · 76 H2O 7a .  相似文献   

3.
Single crystals of three rubidium uranyl selenates, Rb2[(UO2)(SeO4)2(H2O)](H2O) ( 1 ), Rb2[(UO2)2(SeO4)3(H2O)2](H2O)4 ( 2 ), and Rb4[(UO2)3(SeO4)5(H2O)] ( 3 ), have been prepared by evaporation from aqueous solutions made out of mixtures of uranyl nitrate, selenic acid and Rb2CO3. The structures of all compounds have been solved by direct methods on the basis of X‐ray diffraction data sets. The crystallographic data are as follows: ( 1 ): orthorhombic, Pna21, a = 13.677(2), b = 11.8707(13), c = 7.6397(9) Å, V = 1240.4(3) Å3, R1 = 0.045 for 2396 independent observed reflections; ( 2 ): triclinic, P1¯, a = 8.4261(12), b = 11.8636(15), c = 13.3279(18) Å, α = 102.612(10), β = 107.250(10), γ = 102.510(10)°, V = 1183.7(3) Å3, R1 = 0.067 for 4762 independent observed reflections; ( 3 ): orthorhombic, Pbnm, a = 11.3761(14), b = 15.069(2), c = 19.2089(17) Å, V = 3292.9(7) Å3, R1 = 0.075 for 3808 independent observed reflections. The structures of the phases 1 , 2 , and 3 are based upon uranyl selenate hydrate sheets composed from corner‐sharing pentagonal [UO7]8— bipyramids and [SeO4]2— tetrahedra. In the crystal structure of 1 , the sheets have composition [(UO2)(SeO4)2(H2O)]2— and run parallel to (001). The interlayer contains Rb+ cations and additional H2O molecules. In structure of 2 , the [(UO2)2(SeO4)3(H2O)2]2— sheets are oriented parallel to (101). Highly disordered Rb+ cations and H2O molecules are located between the sheets. The structure of 3 is based upon [(UO2)3(SeO4)5(H2O)]4— sheets stacked parallel to (010) and contains Rb+ cations in the interlayers. The topologies of the uranyl oxoselenate sheets observed in the structures of 1 , 2 , and 3 are related to the same simple and highly‐symmetric graph consisting of 3‐connected white and 6‐connected black vertices.  相似文献   

4.
The decomposition of transition metal biphthalates [M(H2O)6](C8H5O4)2 (M = Fe, Co, Ni) and copper biphthalate [Cu(C8H5O4)2(H2O)2] was studied by thermal analysis and mass spectrometry. The decomposition was shown to proceed in three stages: the temperature of the third stage of decomposition decreased in the series of iron, cobalt, nickel, and copper biphthalates from 365 to 275°C. The mass spectrometric study showed the evolution of CO2, diphenylene C12H8, and fluorene (C6H4)2CH2 that at this stage. It was shown by electron scanning microscopy, X-ray diffraction analysis, and chemical analysis that the final thermolysis product of transition metal biphthalates was a composite consisting of the polymer and incorporated into it round submicronic aggregates with metallic particles inside.  相似文献   

5.
Single crystals of [Eu(C4H4O6)(H2O)2](H2O)2 were obtained from the combination of solutions of EuCl2, previously obtained by electrolysis of an aqueous solution of EuCl3, and tartraric acid, neutralized by LiOH. The crystal structure (orthorhombic, P212121, Z = 4, a = 948.9(1), b = 954.6(1), c = 1098.4(1) pm; R(F) = 0.0242 and Rw(F2) = 0.0585 for I > 2σ(I); R(F) = 0.0256 and Rw(F2) = 0.0592 for all data) is isotypic with [Ca(C4H4O6)(H2O)2](H2O)2 and [Sr(C4H4O6)(H2O)2](H2O)2 exhibiting a three‐dimensional structure. The divalent cations (Eu2+, Ca2+, Sr2+) are eight‐coordinate by oxygen atoms that originate from carboxylate and hydroxyl groups of the tartraric dianion and two of the four water molecules.  相似文献   

6.
Rubidium chromium(III) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­chromium(III)­rubidium(I)], [RbCr(C2O4)2(H2O)2], (I), and dicaesium magnesium dioxalate tetrahydrate [tetra­aqua­bis(μ‐oxalato)­magnesium(II)­dicaesium(I)], [Cs2Mg(C2­O4)2(H2O)4], (II), have layered structures which are new among double‐metal oxalates. In (I), the Rb and Cr atoms lie on sites with imposed 2/m symmetry and the unique water molecule lies on a mirror plane; in (II), the Mg atom lies on a twofold axis. The two non‐equivalent Cr and Mg atoms both show octahedral coordination, with a mean Cr—O distance of 1.966 Å and a mean Mg—O distance of 2.066 Å. Dirubid­ium copper(II) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­copper(II)­dirubidium(I)], [Rb2Cu(C2O4)2(H2O)2], (III), is also layered and is isotypic with the previously described K2‐ and (NH4)2CuII(C2O4)2·2H2O compounds. The two non‐equivalent Cu atoms lie on inversion centres and are both (4+2)‐coordinated. Hydro­gen bonds are medium‐strong to weak in the three compounds. The oxalate groups are slightly non‐planar only in the Cs–Mg compound, (II), and are more distinctly non‐planar in the K–Cu compound, (III).  相似文献   

7.
Reaction of the N-(2-pyridyl)carbonylaniline ligand (L) with Cu(NO3)2, Cu(ClO4)2, Zn(ClO4)2, Ni(NO3)2 and PdCl2 gives complexes with stoichiometry [Cu(L)2(H2O)2](NO3)2, [Cu(L)2(H2O)2](ClO4)2, [Zn(L)2(H2O)2] (ClO4)2, [Ni(L)2(H2O)Cl](NO3) and PdLCl2. The new complexes were characterized by elemental analyses and infrared spectra. The crystal structures of [Cu(L)2(H2O)2](NO3)2, [Cu(L)2(H2O)2](ClO4)2, and [Zn(L)2(H2O)2](ClO4)2 were determined by X-ray crystallography. The cation complexes [M(L)2(H2O)2] contain copper(II) and zinc(II) with distorted octahedral geometry with two N-(2-pyridyl)carbonylaniline (L) ligands occupying the equatorial sites. The hexa-coordinated metal atoms are bonded to two pyridinic nitrogens, two carbonyl oxygens and two water molecules occupying the axial sites. Both the coordinated water molecules and uncoordinated amide NH groups of the N-(2-pyridyl)carbonylaniline (L) ligands are involved in hydrogen bonding, resulting in infinite hydrogen-bonded chains running in one and two-dimensions.  相似文献   

8.
In the title compound, disodium cobalt tetrakis­(dihydrogen­phosphate) tetrahydrate, the CoII ion lies on an inversion centre and is octahedrally surrounded by two water molecules and four H2PO4 groups to give a cobalt complex anion of the form [Co(H2PO4)4(OH2)]2?. The three‐dimensional framework results from hydrogen bonding between the anions. The relationship with the structures of Co(H2PO4)2·2H2O and K2CoP4O12·5H2O is discussed.  相似文献   

9.
On a New Complex of Antimony Oxide Fluoride and Oxalate. Crystal Structure of (NH4)4H2(C2O4)3(SbOF) 2 · H2O The crystal structure of (NH4)4H2(C2O4)3(SbOF) 2 · H2O has been fixed by X-ray diffraction on single crystal (R = 0.025 for 2124 planes). The antimony atom is complexed by the oxalate anions which are bidendate chelates. Antimony coordination is seven (five oxygen atoms, one fluorine atom, and the lone pair E). Antimony environment is a pentagonal bipyramid, one of the axial positions is occupied by the lone pair, the other one by the fluorine atom.  相似文献   

10.
《Solid State Sciences》2001,3(1-2):133-142
Two new cobalt phosphates, NaCo3(OH)(PO4)2.1/4H2O (1) and Na(NH4)Co2(PO4)2.H2O (2) have been synthesized hydrothermally and characterized by single crystal X-ray diffraction methods, vibrational (IR and Raman) spectroscopy, thermogravimetric analysis and magnetic measurements. The structure of 1 is a new framework type while 2 is an example of a chiral cobalt phosphate. Both phases contain channels in which the Na+, NH4+ cations and H2O molecules are located.  相似文献   

11.
An organically templated neodymium oxalate–sulfate [C6N2H14][Nd2(C2O4)2(SO4)2(H2O)4]·H2O ( 1 ) has been synthesized under hydrothermal conditions and structurally characterized by single‐crystal X‐ray diffraction analysis. In 1 , the neodymium(III) ions are interconnected through oxalate and sulfate groups to form a neodymium oxalate–sulfate hybrid structure. A luminescence spectrum of 1 was recorded, and the luminescence decay time was also measured.  相似文献   

12.
The crystal and molecular structure of dipotassium di‐μ‐oxo‐bis[aqua(oxalato‐O1,O2)oxomolybdenum(III)] trihydrate, K2­[Mo2O4(C2O4)2(H2O)2]·3H2O, has been determined from X‐ray diffraction data. In the dimeric anion, which has approximate twofold symmetry, each Mo atom is in a distorted octahedral coordination, being bonded to one terminal oxo‐O atom, two bridging O atoms, two O atoms from the oxalato ligand and one from the water mol­ecule. Bond lengths trans to the multiple‐bonded terminal oxo ligand are larger than those in the cis position, confirming the trans influence as a generally valid rule.  相似文献   

13.
Crystal Structure of (NMe4)2[Re3Br11(H2O)] [Re3Br9(H2O)3](H2O)2 . (NMe4)2[Re3Br11(H2O)] [Re3Br9(H2O)3](H2O)2 crystallizes from hydrobromic acid solution of Re3Br9 · 2 H2O and NMe4Br at 0 – 5°C. The crystal structure (monoclinic; P21/m (Nr. 11); a = 967.9(3); b = 1 529.7(4); c = 1 710.9(4) pm; β = 91.66(2)°; Z = 2; R = 0.113; Rw = 0.068) has been determined from four-circle diffractometer data. The structure contains two different cluster units of trivalent rhenium, isolated anionic [Re3Br11(H2O)]2? units and neutral cluster units that are connected through crystal water molecules to chains{[Re3Br9(H2O)3](H2O)2}.  相似文献   

14.
Synthesis and Crystal Structure of Metal(I) Hydrogen Sulfates – Ag(H3O)(HSO4)2, Ag2(HSO4)2(H2SO4), AgHSO4, and Hg2(HSO4)2 Hydrogen sulfates Ag(H3O)(HSO4)2, Ag2(HSO4)2 · (H2SO4), and AgHSO4 have been synthesized from Ag2SO4 and sulfuric acid. Hg2(HSO4)2 was obtained from metallic mercury and 96% sulfuric acid as starting materials. The compounds were characterized by X‐ray single crystal structure determination. Ag(H3O)(HSO4)2 belongs to the structure type of Na(H3O)(HSO4). The silver atom is coordinated by 6 + 2 oxygen atoms. In the structure, there are dimers and chains of hydrogen bonded HSO4 tetrahedra. Dimers and chains are connected by the H3O+ ion to form a three dimensional hydrogen network. Ag2(HSO4)2(H2SO4) crystallizes isotypic to Na2(HSO4)2(H2SO4). The coordination number of silver is 6 + 1. The structure of Ag2(HSO4)2(H2SO4) is characterized by hydrogen bonded trimers of HSO4 tetrahedra, which are further connected to chains. For the recently published structure of AgHSO4 the hydrogen bonding system was discussed. There are tetrameres and chains, connected by bifurcated hydrogen bonds. The structure of Hg2(HSO4)2 contains Hg22+ cations with Hg–Hg distance of 2.509 Å. Every mercury atom is coordinated by one oxygen atom at shorter distance (2.18 Å) and three ones at longer distances (2.57 to 3.08 Å). The HSO4 tetrahedra form zigzag chains by hydrogen bonds.  相似文献   

15.
The Chloride Nitrate PrCl2(NO3) · 5 H2O with Cationic and Anionic Complexes according to [PrCl2(H2O)6][PrCl2(NO3)2(H2O)4] Green single crystals of PrCl2(NO3) · 5 H2O have been obtained from an aqueous solution of PrCl3 and Pr(NO3)3. The crystal structure [monoclinic, P2/c, Z = 4, a = 1228.8(3), b = 648.4(1), c = 1266.0(4) pm, β = 91.91(3)°] contains cationic and anionic Pr3+ complexes according to [PrCl2(H2O)6][PrCl2(NO3)2(H2O)4]. Both nitrate groups of the anionic complex act as bidentate chelating ligands. Hydrogen bonds are observed with water molecules as donors and chlorine as well as oxygen atoms as acceptors.  相似文献   

16.
The single crystals of (C2H7N4O)2[UO2(C2O4)2(H2O)] were studied by X-ray diffraction. The crystals are monoclinic, space group Pn, Z = 2, unit cell parameters: a = 9.4123(2) Å, b = 8.4591(2) Å, c = 11.8740(3) Å, β = 105.500(10)°, V = 911.02(4) Å3. The main structural units of the crystals of I are islet complex groups [UO2(C2O4)2(H2O)]2? corresponding to the crystal chemical group AB 2 01 M1 (A = UO UO 2 2+ , B01 = C2O 4 2? , M = H2O) of uranyl complexes. Uranium-containing mononuclear complexes are connected into a three-dimensional framework through the electrostatic interactions and hydrogen bonding system involving carbamyolguanidinium ions.  相似文献   

17.
[Mn(H2O)4(C4N2H4)][C6H4(COO)2] – An One‐Dimensional Coordination Polymer with Chain‐like [Mn(H2O)4(C4N2H4)]n2n+ Polycations Orthorhombic single crystals of [Mn(H2O)4(C4N2H4)][C6H4(COO)2] have been prepared in aqueous solution at room temperature. Space group Imm2 (no. 44), a = 1039.00(6) pm, b = 954.46(13) pm, c = 737.86(5) pm, V = 0.73172(12) nm3, Z = 2. Mn2+ is coordinated in a octahedral manner by four water molecules and two nitrogen atoms stemming from the pyrazine molecules (Mn–O 215.02(11) pm; Mn–N 228.7(4), 230.7(4) pm). Mn2+ and pyrazine molecules form chain‐like polycations with [Mn(H2O)4(C4N2H4)]n2n+ composition. The positive charge of the polycationic chains is compensated for by phthalate anions, which are accomodated between the chains. The phthalate anions are linked by hydrogen bonds to the polycationic chains. Thermogravimetric analysis in air revealed that the loss of water of crystallisation and pyrazine occurs in two steps between 130 and 245 °C. The resulting sample was stable up to 360 °C. Further decomposition yielded Mn2O3.  相似文献   

18.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

19.
Sodium indium(III) chromate(VI) dihydrate, NaIn(CrO4)2·2H2O, synthesized from an aqueous solution at room temperature, is the first indium(III) member of the large family of compounds with kröhnkite [Na2CuII(SVIO4)2·2H2O]‐type chains. The crystal structure is based on infinite octa­hedral–tetra­hedral [In(CrO4)2(H2O)2] chains along [010], linked via charge‐balancing Na+ cations. The slightly distorted InO4(H2O)2 octa­hedra are characterized by a mean In—O distance of 2.125 Å. The CrO4 tetra­hedra are strongly distorted (mean Cr—O = 1.641 Å). The Na atom shows an octa­hedral coordination, unprecedented among compounds with kröhnkite‐type chains. The NaO6 octa­hedra share opposite edges with the InO4(H2O)2 octa­hedra to form infinite [001] chains. The hydrogen bonds are of medium strength. NaIn(CrO4)2·2H2O belongs to the structural type F2 in the classification of Fleck, Kolitsch & Hertweck [Z. Kristallogr. (2002), 217 , 435–443], and is isotypic with KAl(CrO4)2·2H2O and MFe(CrO4)2·2H2O (M = K, Tl or NH4). All atoms are in special positions except one O atom.  相似文献   

20.
The First Hydrogencarbonates with a Trimeric [H2(CO3)3]4? Group: Preparation and Crystal Structure of Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1.5 H2O Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1,5 H2O were prepared by means of the reaction of (CH3)2CO3 with RbOH resp. KOH in aqueous methanole. Trimer [H2(CO3)3]4?-anions were found in the crystal structure of Rb4H2(CO3)3 · H2O (orthorhombic, Pnma (no. 62), a = 1 218.0(1) pm, b = 1 572.3(6) pm, c = 615.9(1) pm, VEZ = 1 179.5(5) · 106 pm3, Z = 4, R1(I ≥ 2σ(I)) = 0.027, wR2(I ≥ 2σ(I)) = 0.055). K4H2(CO3)3 · 1,5 H2O crystallizes in an OD-structure. The determined superposition structure (orthorhombic, Pbam (no. 55), a = 1 161.8(1) pm, b = 597.0(1) pm, c = 383.85(3) pm, VEZ = 266.3(1) · 106 pm3, Z = 1, R1(I ≥ 2σ(I)) = 0.035, wR2(I ≥ 2σ(I)) = 0.074) can be derived from the structure of the rubidium compound. The thermal decomposition of the substances is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号