首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This study gives an original methodology to synthetize novel metallo‐drugs nanoparticles relevant for medicinal chemistry. Gold (HAuCl4) are complexes with antitumor compounds (paclitaxel (PTX); docetaxel (DTX)) and dicarboxylic acid‐terminated polyethylene‐glycol (PEG) that plays a role of surfactants. The proposed synthesis is fast and leads to hybrid‐metal nanoparticles (AuNPs) in which drug solubility is improved. The interactions between drugs (DTX, PTX), PEG diacid (PEG), and Au (III) ions to form hybrid nanocarriers called DTX IN PEG‐AuNPs and PTX IN PEG‐AuNPs, are characterized by various analytical techniques (Raman and UV–vis spectroscopies) and transmission electron microscopy. The efficient drugs release under pH conditions is also achieved and characterized showing an amazing reversible equilibrium between Au (III)‐complex‐drug and Au0NPs. For therapeutic purposes, such AuNPs are then decorated with the anti‐EGFR polyclonal antibodies, which specifically recognizes the hERG1 channel aberrantly expressed on the membrane of human lung cancer cells. This paper, through an original chemical approach, will occupy an important position in the field of nanomedicine, and hope that novel perspectives will be proposed for the development of high drug‐loading nanomedicines.  相似文献   

2.
Hao X  Wu J  Shan Y  Cai M  Shang X  Jiang J  Wang H 《J Phys Condens Matter》2012,24(16):164207
Efficient intracellular delivery of gold nanoparticles (AuNPs) and unraveling the mechanism underlying the intracellular delivery are essential for advancing the applications of AuNPs toward in vivo imaging and therapeutic interventions. We employed fluorescence microscopy to investigate the internalization mechanism of small-size AuNPs by living Hela cells. Herein, we found that the caveolae-mediated endocytosis was the dominant pathway for the intracellular delivery of small-size AuNPs. The intracellular delivery was suppressed when we depleted the cholesterol with methyl-β-cyclodextrin (MβCD); in contrast, the sucrose that disrupts the formation of clathrin-mediated endocytosis did not block the endocytosis of AuNPs. Meanwhile, we examined the intracellular localization of AuNPs in endocytic vesicles by fluorescent colocalization. This work would provide a potential technique to study the intracellular delivery of small-size nanoparticles for biomedical applications.  相似文献   

3.
Biosynthesis and characterizations of nanoparticles have become an important branch of nanotechnology. In this paper, green synthesis of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using the flower extract of Rosa damascena as a reducing and stabilizing agent, has been discussed. This approach is simple, cost-effective and stable for a long time, reproducible at room temperature and in an eco-friendly manner to obtain a self-assembly of AuNPs and AgNPs. The resulting nanoparticles are characterized using UV–vis, TEM, XRD and FT-IR spectroscopic techniques. A modified glassy carbon electrode using AuNPs (AuNPs/GCE) was investigated by means of cyclic voltammetry in a solution of 0.1 M KCl and 5.0×10−3 M [Fe(CN)6]3−/4−. The results show that electronic transmission rate between the modified electrode and [Fe(CN)6]3−/4− increased.  相似文献   

4.
In cancer hyperthermia, ultrasound is considered as an appropriate source of energy to achieve desired therapeutic levels of heating. It is assumed that such a heating is targeted to cancer cells by using nanoparticles as sonosensitization agents. Here, we report the sonosensitizing effects of Nano-Graphene Oxide (NGO) and compare them with gold nanoparticles (AuNPs), Iron Oxide nanoparticles (IONPs).Experiments were conducted to explore the effects of nanoparticle type and concentration, as well as ultrasound power, on transient heating up of the solutions exposed by 1 MHz ultrasound. Nanoparticles concentration was selected from 0.25 to 2.5 mg/ml and the solutions were exposed by ultrasound powers from 1 to 8 W. Real time temperature monitoring was done by a thermocouple and obtained data was analyzed.Temperature profiles of various nanoparticle solutions showed the higher heating rates, in comparison to water. Heating rise was strongly depended on nanoparticles concentration and ultrasound power. AuNPs showed a superior efficiency in heat generation enhancement in comparison to IONPs and NGO.Our result supports the idea of sonosensitizing capabilities of AuNPs, IONPs, and NGO. Targeted hyperthermia may be achievable by preferential loading of tumor with nanoparticles and subsequent ultrasound irradiation.  相似文献   

5.
Recent studies have revealed the existence of liver cancer stem cells (CSCs). Therefore, there is an urgent need for new and effective treatment strategies specific to liver CSCs. In this work, the poly(d,l-lactide-coglycolide) nanoparticles containing paclitaxel were prepared by emulsification-solvent evaporation method. The nanoparticles decorated with anti-CD133 antibody, termed targeted nanoparticles, were prepared by carbodiimide chemistry for liver CSCs. The physicochemical characteristics of the nanoparticles (i.e., encapsulation efficiency, particle size distribution, morphology, and in vitro release) were investigated. Cellular uptake and accumulation in tumor tissue of nanoparticles were observed. To assess anti-tumor activity of nanoparticles in vitro and in vivo, cell survival assay and tumor regression study were carried out using liver cancer cell lines (Huh7 and HepG2) and their xenografts. Particle size of targeted nanoparticles was 429.26 ± 41.53 nm with zeta potential of ?11.2 mV. Targeted nanoparticles possessed spherical morphology and high encapsulation efficiency (87.53 ± 5.9 %). The accumulation of targeted nanoparticles depends on dual effects of passive and active targeting. Drug-loaded nanoparticles showed cytotoxicity on the tumor cells in vitro and in vivo. Targeted nanoparticles resulted in significant improvement in therapeutic response through selectively eliminating CD133 positive subpopulation. These results suggested that the novel nanoparticles could be a promising candidate with excellent therapeutic efficacy for targeting liver CSCs.  相似文献   

6.
Detailed information on the location and the size of tumor cells circulating through lymphatic and blood vessels is useful to cancer diagnosis. Metastasis of cancers to other non‐adjacent organs is reported to cause 90% of deaths not from the primary tumors. Therefore, effective detection of circulating tumors cells (CTCs) related to metastasis is emphasized in cancer treatments. With the use of synchrotron X‐ray micro‐imaging techniques, high‐resolution images of individual flowing tumor cells were obtained. Positively charged gold nanoparticles (AuNPs) which were inappropriate for incorporation into human red blood cells were selectively incorporated into tumor cells to enhance the image contrast. This approach enables images of individual cancer cells and temporal movements of CTCs to be captured by the high X‐ray absorption efficiency of selectively incorporated AuNPs. This new technology for in vivo imaging of CTCs would contribute to improve cancer diagnosis and cancer therapy prognosis.  相似文献   

7.
A compact bench‐top system based on a dielectric barrier plasma discharge (DBD), enables the rapid, automatable, and continuous‐flow synthesis of gold nanoparticles (AuNPs) and radioactive gold nanoparticles (198AuNPs). AuNPs are used as radiosensitizers in oncology, and 198AuNPs (half‐life: 2.7 d) have been suggested as potential cancer brachytherapy sources. Plasma applied at the surface of a liquid containing gold ions (AuCl4?) and dextran induces the production of AuNPs directly in water. This synthesis is monitored in real time by UV–visible spectrometry: the change of absorbance of the solution provides new insights on the growth dynamics of AuNPs by plasma synthesis. By balancing gold ions and surfactant molecules, particles with a diameter lying in the optimal range for radiosensitizing applications (28 ± 9 nm) are produced. The method yields a reduction of more than 99% of the gold ions within only 30 min of plasma treatment. A postsynthesis ripening of the AuNPs is revealed, monitored by UV–visible spectrometry, and quantified within the first few hours following plasma treatment. Radioactive 198AuNPs are also produced by DBD synthesis and characterized by electron microscopy and single‐photon emission computed tomography imaging. The results confirm the efficiency of DBD reactors for AuNPs synthesis in oncology applications.  相似文献   

8.
Studies into the cell nucleus' incorporation of gold nanoparticles (AuNPs) are often limited by ambiguities arising from conventional imaging techniques. Indeed, it is suggested that to date there is no unambiguous imaging evidence for such uptake in whole cells, particularly at the single nanoparticle level. This shortcoming in understanding exists despite the nucleus being the most important subcellular compartment in eukaryotes and gold being the most commonly used metal nanoparticle in medical applications. Here, dual‐angle X‐ray flouresence is used to show individually resolved nanoparticles within the cell nucleus, finding them to be well separated and 79% of the intranuclear population to be monodispersed. These findings have important implications for nanomedicine, illustrated here through a specific exemplar of the predicted enhancement of radiation effects arising from the observed AuNPs, finding intranuclear dose enhancements spanning nearly five orders of magnitude.  相似文献   

9.
The design of effective cancer vaccines must be able to activate dendritic cells (DCs) of the innate immune system in order to induce immunity to pathogens and cancer. DCs patrol the body and once they encounter antigens, they orchestrate a complex mechanism of events and signals that can alert the adaptive immune system to action. However, DC‐based vaccines remain a challenge in part because the source and quality of antigens, the DC targeting molecule, type of adjuvant, and delivery vehicle must be optimized to induce a robust immune response. Gold nanoparticles (AuNPs) have now entered clinical trials as carriers due to their ease of functionalization with antigens, adjuvants, and targeting molecules. This progress report discusses how AuNPs can influence DC activation and maturation, as well as their potential impact on T helper (Th) differentiation. Ultimately, successful AuNP‐based DC vaccines are able to induce phagocytosis, activation/maturation, migration, T cell costimulation, and cytokine secretion, which is named AuNP‐induced DC tuning (AuNP‐DC tuning). Although at its infancy, understanding the processes of AuNP‐DC tuning will give a better understanding of how best to engineer AuNPs and will redefine the next generation of DC‐based vaccines.  相似文献   

10.
The cytotoxic effects of silica nanoparticles (SNPs) on different human cancer cells, as well as the uptake kinetics and pathways of SNPs have been studied here. SNPs with the diameter of ≈20 nm induced a dose‐dependent cytotoxicity in both gastric cancer cells (MGC80–3) and cervical adenocarcinoma epithelial cells (HeLa), but MGC80–3 cells were more susceptible to the cytotoxic effect induced by SNPs. Changes in the nuclear morphology and flow cytometric analysis with annexin V/PI double staining show that SNPs induced a higher degree of apoptosis in MGC80–3 cells. Accordingly, more remarkable reactive oxygen species (ROS) burst is detected in SNP‐treated MGC80–3 cells. Using fluorescein isothiocyanate (FITC)‐labeled SNPs and flow cytometry, it is found that the uptake of SNPs is more efficient in MGC80–3 than in HeLa cells. SNPs are internalized into both cancer cells through energy‐dependent pathway. Inhibitor studies with dynasore and methyl‐β‐cyclodextrin show that these cancer cells took up 20 nm SNPs mainly through the caveolin‐mediated endocytosis, while in HeLa cells SNPs internalization was also via dynamin‐dependent clathrin‐mediated pathway. These findings indicate that SNPs cause differential cytotoxic effects in different human cancer cells, which might be related to the uptake process and efficiency toward these cancer cells.  相似文献   

11.
Silver nanoparticles (AgNPs) are a potential class of nanomaterial for antibiosis and chemotherapeutic effects against human carcinoma cells. However, the DNA-damaging ability of free AgNPs pose the critical issues in their biomedical applications. Herein, we demonstrated a facile method to capture Ag+ ions and reduce them into active AgNPs within Zr-based metal-organic frameworks (MOFs) of UiO-66 with a mild reductant of DMF (AgNPs@UiO-66(DMF)). The average diameters of UiO-66 carriers and AgNPs were facilely controlled to be 140 and 10 nm, respectively. The obtained UiO-66 nanocarriers exhibited excellent biocompatibility and could be effectively endocytosed by cancer cells. Additionally, the AgNPs@UiO-66(DMF) could rapidly release Ag+ ions and efficiently inhibit the growth of cancer cells. The half maximal inhibitory concentration (IC50) values of the encapsulated AgNPs were calculated to be 2.7 and 2.45 μg mL?1 for SMMC-7721 and HeLa cells, respectively, which were much lower than those of free AgNPs in the reported works. Therefore, the developed AgNPs@UiO-66(DMF) not only maintained the therapeutic effect against cancer cells but also reduced the dosage of free AgNPs in chemotherapy treatment.
Graphical abstract A mild reduction process was developed for the fabrication of AgNPs@UiO-66, which exhibited efficient induction of apoptosis in cancer cells.
  相似文献   

12.
The new vessel formations play a vital role in growth and spread of cancer. Current anti-angiogenic therapies, predominantly based on vascular endothelial growth factor (VEGF) inhibition, can inhibit vascular development; however, they are usually ineffective against the primary tumor occurrence. The aim of this study was to assess anti-angiogenic effects of gold nanoparticles (AuNPs) functionalized with Semaphorin (Sema) 3F protein. The polyethylene glycol (PEG)-coated AuNPs were covalently functionalized with Sema 3F and labeled with the TAMRA fluorescent dye. The effect of the NPs on human umbilical vein endothelial cells (HUVECs) is probed in the way of internalization and viability assays. AuNP-Sema 3F bioconjugates showed great endothelial cell uptake. AuNP-Sema 3F bioconjugates reduced VEGF165-induced endothelial cell proliferation more effectively than Sema 3F alone, suggesting that the therapeutic effects of Sema 3F can be improved by conjugation to AuNPs. Also, no significant toxicity effect was induced by bioconjugates. This is the first study that reports a covalent binding of full length Sema 3F to NPs. The exogenously administration of Sema 3F, which has both anti-angiogenic and anti-tumoral activity, to tumor vasculature via a carrying platform may not only lead to more effective anti-angiogenic treatment but also may make current approach more applicable in clinical use like drug delivery system.
Graphical abstract Anti-proliferative effects of gold nanoparticles conjugated with Semaphorin 3F against VEGF165-stimulated cell proliferation
  相似文献   

13.
The physico-chemical properties of nanoparticles (NPs), such as small dimensions, surface charge and surface functionalization, control their capability to interact with cells and, in particular, with sub-cellular components. This interaction can be also influenced by the adsorption of molecules present in biological fluids, like blood, on NP surface. Here, we analysed the effect of serum proteins on 49 and 100 nm red fluorescent polystyrene NP uptake in porcine aortic endothelial (PAE) cells, as a model for vascular transport. To this aim, NP uptake kinetic, endocytic pathway and intracellular trafficking were studied by monitoring NPs inside cells through confocal microscopy and multiple particle tracking (MPT). We demonstrated that NPs are rapidly internalized by cells in serum-free (SF) medium, according to a saturation kinetic. Conversely, in 10% foetal bovine serum-enriched (SE) medium, NP uptake rate results drastically reduced. Moreover, NP internalization depends on an active endocytic mechanism that does not involve clathrin- and caveolae-mediated vesicular transport, in both SE and SF media. Furthermore, MPT data indicate that NP intracellular trafficking is unaffected by protein presence. Indeed, approximately 50–60% of internalized NPs is characterized by a sub-diffusive behaviour, whereas the remaining fraction shows an active motion. These findings demonstrate that the unspecific protein adsorption on NP surface can affect cellular uptake in terms of internalization kinetics, but it is not effective in controlling active and cellular-mediated uptake mechanisms of NPs and their intracellular routes.  相似文献   

14.
In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T 2 contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T 2 relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.  相似文献   

15.
We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles?? surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500???g/cm3 in 24?h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.  相似文献   

16.
Boron neutron capture therapy (BNCT) is a binary approach for cancer treatment in which boron-10 atoms and thermal neutrons need to colocalize to become effective. Recent research in the development of BNCT drug candidates focuses increasingly on nanomaterials, with the advantages of high boron loadings and passive targeting due to the enhanced permeability and retention (EPR) effect. The use of small boron-rich gold nanoparticles (AuNPs) in combination with a pretargeting approach is proposed. Small sized polyethylene glycol–stabilized AuNPs (core size 4.1 ± 1.5 nm), are synthesized and functionalized with thiolated cobalt bis(dicarbollide) and tetrazine. To enable in vivo tracking of the AuNPs by positron emission tomography (PET), the core is doped with [64Cu]CuCl2. For the pretargeting approach, the monoclonal antibody Trastuzumab is functionalized with trans-cyclooctene-N-hydroxysuccinimide ester. After proving in vitro occurrence of the antibody conjugation onto the AuNPs by click reaction and the low toxicity of the AuNPs, the boron delivery system is evaluated in vivo using breast cancer xenograft bearing mice and PET imaging. Tumor uptake due to the EPR effect can be witnessed with ≈5% injected dose (ID) cm−3 at 24 h postinjection, but with slower clearance than expected. Therefore, no increased retention can be observed using the pretargeting strategy.  相似文献   

17.
Although photodynamic therapy is an efficient therapeutic strategy for cancer treatment, it always suffers from the low singlet oxygen (1O2) yields owing to the weak absorption in optical transparent window of biological tissues. Herein, the black phosphorus (BP) nanosheet is integrated with gold nanoparticles (AuNPs) to simultaneously enhance the singlet oxygen generation and hyperthermia by localized surface plasmon resonance (LSPR) in cancer therapy. In the design, BP nanosheet employed as two‐dimension (2D) inorganic photosensitizer is hybridized with AuNPs through polyetherimide (PEI) as bridge to form BP‐PEI/AuNPs hybrid nanosheet. Such hybridation not only significantly increases the 1O2 production of BP nanosheet through maximizing the local field enhancement of AuNPs, but also significantly enhances the light absorption of BP nanosheet to promote photothermal effect by LSPR. Accordingly, about 3.9‐fold enhancement of 1O2 production and 1.7‐fold increasement of photothermal conversion efficiency are achieved compared with BP‐PEI alone upon single 670 nm laser irradiation. As a proof‐of‐concept model, BP‐PEI/AuNPs hybrid nanosheet with simultaneous dual‐modal phototherapy functions result in effective suppression of tumor growth with minimized side effects both in vitro and in vivo, indicating the great potential of the BP‐PEI/AuNPs hybrid nanosheet as an effective strategy to enhance the cancer therapy efficiency.  相似文献   

18.
金纳米粒子的电化学合成及光谱表征   总被引:8,自引:0,他引:8  
采用电化学方法合成各种形状的金纳米粒子,生成的金纳米粒子形貌与施加电流有关,通过匀速递增电流电解的方法,可制备得到哑铃形,球形以及棒状金纳米粒子,采用恒电流电解方法主要获得球形及哑铃形纳米粒子。利用透射电镜、紫外-可见光谱及拉曼光谱对金纳米粒子进行相关表征。紫外-可见光谱研究发现金纳米棒出现位于近红外区间的吸收峰(985 nm),由此推测棒的长径比约为6。以结晶紫为探针分子,研究了金纳米粒子的表面增强拉曼光谱(SERS)效应,并分析得出其平躺的吸附模式。根据形貌表征的结果推断了纳米粒子的生长机理。  相似文献   

19.
As several multi-target drug delivery approaches are successfully identified through preclinical screening, their clinical success is often hampered by challenges such as poor circulation stability, dissimilarities in the pharmacokinetics of different drugs, as well as targeting inefficiency. Gold nanoparticles (AuNPs) are adopted as promising nanocarriers in the co-delivery of multiple therapeutic drugs for combination therapy. The pH-responsive AuNPs are synthesized and incorporated with multiple chemotherapeutic drugs, such as doxorubicin and bleomycin. Such structures can work as drug carriers to treat cervical carcinoma by adopting a quality by design approach. The designed nanocarrier is characterized by adopting a range of physicochemical and morphological techniques. In vitro drug release and cytotoxicity of optimized nanocarriers are assessed to cervical tumor epithelial cells. The results highlight the notable advantages of colloidal AuNPs, including sustained drug release, therapeutic agent delivery with high stability, and biocompatibility for more effective treatment of cervical carcinoma. Furthermore, by improving the biodistribution and/or bioavailability profiles, it is believed that the two-in-one approach may therefore give evidence on the fate of co-loaded nanocarrier as a promising trajectory for successful clinical translation against ovarian carcinoma to achieve maximum therapeutic synergy for an individual patient.  相似文献   

20.
Combinatory anticancer drug release from gold nanoparticles (AuNPs) in K562 human myeloid leukemia cells was performed using Raman spectroscopy. We fabricated the anticancer drug of imatinib as a BCR‐ABL tyrosine kinase inhibitor on AuNP surfaces along with a transferrin (Tf)‐targeting moiety to treat the leukemia cells. DNA topoisomerase I inhibitor topotecan was also assembled to monitor its fluorescence onto AuNPs. The linker group of 4‐carboxylic benzoic acid was used to conjugate to targeting the Tf protein. Our Raman data indicated that the drug molecules were not detached in the cell culture media but released after treatment with glutathione (2 mM). Intracellular distribution and release of the anticancer drug–AuNP conjugates in K562 cells were examined by both fluorescence microscopy and dark‐field microscopy with surface‐enhanced Raman scattering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号