首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fullerenyl radicals (FR) RC60 · and chemiluminescence (CL) are generated in the presence of O2 in C60—R3Al (R = Et, Bui) solutions in toluene (T = 298 K). The FR are formed due to the addition of the R· radical, which is an intermediate of R3Al autooxidation, to C60. Mass spectroscopy and HPLC were used to identify EtnC60Hm (n, m = 1–6), EtpC60 (p = 2–6), and dimer EtC60C60Et as stable products of FR transformations. As found by ESR, the EtC60 · radical (g = 2.0037) is also generated by photolysis of solutions obtained after interaction in the (C60— R3Al)—O2 system. In the presence of dioxygen, the FR is not oxidized but yields complexes with O2, which appear as broadening of the ESR signals. Chemiluminescence arising in the (C60—R3Al)—O2 system is much brighter (I max = 1.86·108 photon s−1 mL−1) than the known background CL (I max = 6.0·106 photon s−1 mL−1) for the autooxidation of R3Al and is localized in a longer-wavelength spectral region (λmax = 617 and 664 nm). This CL is generated as a result of energy transfer from the primary emitter 3CH3CHO* to the products of FR transformation: RnC60Hm, RpC60, and EtC60C60Et. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 205–213, February, 2007.  相似文献   

2.
Temperature dependences of the heat capacities of disordered graphite-like nanostructures prepared by the thermobaric treatment of fullerite C60 (p = 2 and 8 GPa, T = 1373 K) were measured in the temperature ranges from 7 to 360 K in an adiabatic vacuum calorimeter and from 330 to 650 K in a differential scanning calorimeter. At T < 50 K, the dependences obtained were analyzed using the Debye theory of the heat capacity of solids and its multifractal version. The fractal dimensions D were determined and some conclusions on the heterodynamic character of the structures studied were made. The thermodynamic functions C p o T), H o(T) − H o(0), S o(T) − S o(0), and G o(T) − H o(0) were calculated in the temperature range from T → 0 to 610 (650) K. The thermodynamic properties of the graphite-like nanostructures studied and some carbon allotropes were compared. The standard entropies of formation Δf S o of the graphite nanostructures studied and diamond were calculated along with the standard entropies of the reactions of their synthesis from the face-centered cubic phase of fullerite C60 and their interconversions at T = 298.15 K. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1940–1945, September, 2008.  相似文献   

3.
The temperature dependences of the heat capacity C p° = f(T) were studied in an adiabatic vacuum calorimeter for the orthorhombic, tetragonal, and rhombohedral polymeric C60 phases in the 7—340 K temperature interval with an error of 0.2%. Comparative analysis of C p° of these phases formed by stacking of one-dimensional and two types of two-dimensional polyfullerenes C60, was performed, and their fractal dimensionalities D were determined for temperatures below 50 K. The thermodynamic functions of the crystalline polymeric C60 phases were calculated in the temperature region from O 0 to 340 K: C p°(T), H°(T) — H°(0), S°(T) — S°(0), and G°(T) — H°(0). Assuming that S°(0) = 0, the standard entropies of formation f S° of these phases from graphite at T = 298.15 K and standard pressure were calculated. In addition, the entropies of transformation of the initial face-centered cubic phase of fullerite C60 in the crystalline polymeric C60 phases and entropies of their interconversions under the same conditions were estimated. The thermodynamic characteristics of the polymeric C60 phases were reviewed.  相似文献   

4.
Quenching of fluorescence of polycyclic aromatic hydrocarbons (PAH), namely, naphthalene, anthracene, 9,10-diphenylanthracene, 9,10-dibromoanthracene by C60 fullerene in ethylbenzene at 293 K was found and investigated. The phenomenon is characterized by abnormally high values of bimolecular rate constants for quenching (k bim = (0.18–6.78)·1012 L mol−1 s−1) determined from the Stern—Volmer dependence of the PAH fluorescence intensity on the C60 concentration and occurs through the inductive-resonance (dominant channel) and exchange-resonance (minor channel) energy transfer from 1PAH* to C60. The overlap integrals of the PAH fluorescence spectra with the C60 absorption spectrum and the critical energy transfer distances were calculated. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 432–436, March, 2007.  相似文献   

5.
The reactivity of fullerene C60 toward peroxy radicals RO2 · was tested by the chemiluminescence method. A comparison of the influence of C60 and known inhibitors on the kinetics of liquid-phase chemiluminescence (CL) during oxidation of a series of hydrocarbons (ethyl-benzene, cyclohexane, n-dodecane, and oleic acid) shows that the fullerene does not react with the RO2 · radicals. A sharp decrease in the CL intensity observed upon C60 addition is caused by the quenching of CL emitters with fullerene but not by inhibition of hydrocarbon oxidation. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1808–1811, August, 2005.  相似文献   

6.
Solid solution phases of a formula Fe8V10W16–xMoxO85 where 0≤x≤4, have been obtained, possessing a structure of the compound Fe8V10W16O85. It was found on the base of XRD and DTA investigations that these solution phases melted incongruently, with increasing the value of x, in the temperature range from 1108 (x=0) to 1083 K (x=4) depositing Fe2WO6 and WO3. The increase of the Mo6+ ions content in the crystal lattice of Fe8V10W16O85 causes the lattice parameters a=b contraction with cbeing almost constant. IR spectra of the Fe8V10W16–xMoxO85 solid solution phases have been recorded.  相似文献   

7.
Two methods are described for doping of fullerite C60 with molecular oxygen at a pressure of ∼104 Pa and at temperature 20–30 °C. It was found by mass spectrometry using oxygen 18O as dopant that a portion of molecular oxygen absorbed by the pre-decontaminated fullerite (first method) is removed as CO and CO2 at the heating temperature ≤200 °C. Doping during fullerite precipitation from the liquid phase (second method) makes it possible to prepare samples with the oxygen content ≥1.2 at.%. The fullerite doped with oxygen to this level is diamagnetic. The paramagnetic properties of an O2 molecule disappear when O2 is incorporated into the fullerene lattice. This is interpreted on the basis of quantum chemical calculations as a sequence of equilibrium formation of the adduct C60O2. Calculations showed that the subsequent chemical transformation of C60O2 resulting in the O-O bond cleavage is energetically favorable, enabling prerequisites for the formation of products of incomplete (CO) and deep (CO2) oxidation of fullerene under mild conditions. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 662–671, April, 2006  相似文献   

8.
The electronic structure of the (η2-C60)Pd[P(Ph2)C5H4]2Fe complex was calculated by the “hybrid” B3LYP method. Comparison of the experimental X-ray emission C-Kα spectrum and theoretical spectrum of the compound demonstrated that the electron interactions between the C60 core, palladium atom, and organometallic fragment are described correctly in the framework of the quantum chemical method used. The electronic structure of the organometallic fullerene complex can be presented as a set of blocks of orbitals corresponding to different types of chemical bond. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2640–2644, December, 2005.  相似文献   

9.
Fullerene hydrides were prepared by hydrogenation of fullerences C60 and C70 using proton transfer from 9,10-dihydroanthracene to fullerene and were studied by mass spectrometry (electron impact, field desorption), IR, UV, and1H and13C NMR spectroscopy. The main product of the hydrogenation of C60 is C60H36, which is sufficiently stable. Hydrogenation of fullerene C70 gives a series of polyhydrides C70H n (n=36–46), and the main product is C70H36. The dehydrogenation of C60H36 by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is not quantitative and results in the formation of fullerene derivatives along with C60. The comparison of the IR and1H and13C NMR spectral data for solid C60H36 with the theoretical calculations suggests that the fullerene hydride has aT-symmetric structure and contains four isolated benzenoid rings located at tetrahedral positions on the surface of the closed skeleton of the molecule. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya. No. 4, pp. 671–678, April, 1997.  相似文献   

10.
Fullerite films covered with d-metal layers were obtained. The metal deposited over fullerite was shown to diffuse substantially into the films. The prepared heterophase film structures M/C60 were studied by X-ray diffraction and vibrational spectroscopy. It is established that the interaction between metal and fullerite phases gives rise to chemical bonds M—C60. It results in a partial polymerization of fullerite. Samples of metal-impregnated fullerite films exhibit semiconducting properties.  相似文献   

11.
The possibility of hydrogen transfer from hydrofullerene C60H36 to electrogenerated radical anion C60 .− or dianion C60 2− in propylene carbonate-toluence (3∶2, v/v) was demonstrated by cyclic voltammetry. The process affords C60H2 as the product. The reaction found is the typical redox-induced process. Translated fromIzvestiya Akodemii Nauk. Seriya Khimicheskaya, No. 6, pp. 1136–1139, June, 1998.  相似文献   

12.
This paper describes the synthesis of ZrW2O8 by the use of an aqueous citrate-gel method in order to prepare a fine, pure and homogeneous oxide mixture suitable for ceramic processing. The thermal expansion coefficient thus obtained for α-ZrW2O8 is −10.6 × 10−6 °C−1 (50–125 °C) whereas for the β-ZrW2O8 a value of −3.2 × 10−6 °C−1 (200–300 °C) is obtained. The advantages of the use of a sol–gel method is expressed in the very homogeneous end-products. The paper describes crystallographic data, morphological structure and the thermal expansion properties of the ZrW2O8 material. Moreover, photoluminescence and photochromic properties specific to the precursor gel are described and analyzed. These effects support our views that the precursors show homogeneity up to nanometer level.  相似文献   

13.
Powder X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and molecular dynamics have been employed to investigate structural transformations in hexagonal and cubic modifications of fullerite C60 after the action of high pressure (4 GPa) within the temperature range 20–1450°C. It has been found that fullerene molecules polymerize to afford polymer structures only in the case of face-centered cubic samples. Under the effect of high pressure and temperature, fullerite C60 with a hexagonal close-packed structure is initially transformed into the cubic modification and, then, forms polymerized structures, which, during an increase in the treatment temperature, become less stable and ordered than the same polymerized structures obtained directly from cubic fullerite C60. X-ray photoelectron spectroscopy measurements suggest deformation of the cages of fullerene molecules in the polymerized structures.  相似文献   

14.
A series of complexes of fullerenes C60 and C70 with metal dithiocarbamates {MII(R2dtc)2}·Cm (m = 60 or 70) and metal dithiocarbamates coordinated to nitrogen-containing ligands (L), {MII(R2dtc)2)x·L}·C60 (x = 1 or 2), where M = Cu, Zn, Cd, Hg, Mn, or Fe, R = Me, Et, Prn, Pri, or Bun, L is 1,4-diazabicyclo[2.2.2]octane (DABCO), N,N′-dimethylpiperazine, or hexamethylenetetramine, were synthesized. The shape of dithiocarbamate molecules is sterically compatible with the spherical shape of C60, resulting in an efficient interaction between their π systems. The resulting compounds are characterized by a layered or three-dimensional packing of the fullerene molecules. In the C60 complexes, iron(II) and manganese(II) dithiocarbamates exist in the high-spin states (S = 2 and 5/2). The magnetic susceptibility of {MII(Et2dtc)2}2·Cm (M = Fe or Mn, m = 60 or 70) in the temperature range of 200–300 K is described by the Curie-Weiss law with Θ = −250 and −96 K and with maxima at 110 and 46 K, respectively, which is indicative of a strong antiferromagnetic spin coupling between MII. The Weiss constants for the [{MII(Et2dtc)2}2·DABCO]·C60·(DABCO)2 complexes (M = Fe or Mn) are 1.7 and 0.3 K, respectively. The magnetic moments of the complexes containing Fe and Mn dithiocarbamates slightly increase at temperatures below 50 and 35 K, respectively, which is evidence of the ferromagnetic spin coupling between MII in {MII(Et2dtc)2}2·DABCO. Single crystals of the complexes exhibit low dark conductivity (10−10–10−11 S cm−1). The visible light irradiation of these crystals leads to an increase in the photocurrent by two–three orders of magnitude. The photogeneration of free charge carriers in the complexes occurs both due to the photoexcitation of metal dithiocarbamate (CuII(Et2dtc)2) and through the charge transfer from metal dithiocarbamate (MII(Et2dtc)2, M = Zn or Cd) to C60. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2072–2087, November, 2007.  相似文献   

15.
The interaction between the radical anions C60 ·− and divalent d- and f-metal (Co, Fe, Ni, Mn, Eu, Cd) cations in DMF and acetonitrile-benzonitrile (AN-BN) mixture was studied. Black solid polycrystalline salts (C60 ·−)2{(M2+)(DMF) x } (x = 2.4–4, 1–6) containing the radical anions C60 ·− and metal(ii) cations solvated by DMF were prepared for the first time and their optical and magnetic properties were studied. The salts containing Co2+, Fe2+, and Ni2+ are characterized by antiferromagnetic interactions between the radical anions C60 ·−, which result in unusually large broadening of the EPR signal of C60 ·− upon lowering the temperature (from 5.55–12.6 mT at room temperature to 35–40 mT at 6 K for Co2+ and Ni2+). The salts containing Mn2+ and Eu2+ form diamagnetic dimers (C60 )2, which causes a jumpwise decrease in the magnetic moment of the complexes and disappearance of the EPR signal of C60 ·− in the temperature range 210–130 K. A feature of salt 6 is magnetic isolation of the radical anions C60 ·− due to the presence of diamagnetic cation Cd2+. The salts prepared are unstable in air and decompose in o-dichlorobenzene or AN. Reactions of C60 ·− with metal(ii) cations in AN-BN mixture result in decomposition products of the salts that contain neutral fullerene dimers and metals solvated by BN. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1909–1919, September, 2008.  相似文献   

16.
Relative enthalpies for low-and high-temperature modifications of Na3FeF6 and for the Na3FeF6 melt have been measured by drop calorimetry in the temperature range 723–1318 K. Enthalpy of modification transition at 920 K, δtrans H(Na3FeF6, 920 K) = (19 ± 3) kJ mol−1 and enthalpy of fusion at the temperature of fusion 1255 K, δfusH(Na3FeF6, 1255 K) = (89 ± 3) kJ mol−1 have been determined from the experimental data. Following heat capacities were obtained for the crystalline phases and for the melt, respectively: C p(Na3FeF6, cr, α) = (294 ± 14) J (mol K)−1, for 723 = T/K ≤ 920, C p(Na3FeF6, cr, β) = (300 ± 11) J (mol K)−1 for 920 ≤ T/K = 1233 and C p(Na3FeF6, melt) = (275 ± 22) J (mol K)−1 for 1258 ≤ T/K ≤ 1318. The obtained enthalpies indicate that melting of Na3FeF6 proceeds through a continuous series of temperature dependent equilibrium states, likely associated with the production of a solid solution.   相似文献   

17.
Quenching of electronically excited states of Ln3+* ions generated upon photoexcitation of toluene solutions of Ln(acac)3·H2O (Ln = Tb, Eu) complexes by C60 fullerene at 293 K was detected and investigated. The dependences of quenching efficiency on C60 concentration obtained from data on the decrease in the photoluminescence intensity and Ln3+* lifetimes obey the Stern-Volmer law. Quenching is due to inductive-resonant energy transfer from Ln3+* to C60 fullerene. The bimolecular rate constants for quenching, the overlap integrals of the Ln3+* photoluminescence spectra with the C60 absorption spectra, and the critical energy transfer distances were determined. No sensitized luminescence of C60 in the system studied was detected. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 921–925, June, 2006.  相似文献   

18.
Methane-intercalated fullerite (CH4)0.56C60 was obtained by low-temperature precipitation from solution. Methane transition from the gas phase to the octahedral void of fullerite is accompanied by a bathochromic shift of normal vibrational frequencies (by 19 and 8 cm−1 for ν3 and ν4, respectively). The methane 13C signal in the proton decoupling 13C NMR spectrum is observed as a singlet at δ−0.42. According to quantum chemical calculations using density functional theory, location of methane in the octahedral void of fullerite (C60)6 leads to a decrease in the total energy of fullerite by 4 kcal mol−1.  相似文献   

19.
The rotation dynamics of C60 molecules in organic superconductor K3C60 has been investigated from the viewpoint of intramolecular interaction. It is determined that the rotation of C60 at mom temperature has been frozen up within a small region of rotation angle (0°–50°), and pointed out that the reason for the freeze is the physical interaction rather than the geometrical hindrance. The computations of the interactions for alkali-doped compounds A3-x A′ x C60 (x = 1, 2, 3; A, A′ = K, Rb, Cs) other than K3C60 have also been camed out. Fmm the obtained results, it is seen that the superconducting transition temperatures T, are strongly connected with the interactions in them, and this observation is consistent with the discovery of the correlation between Tc, and lattice constants a. Project supported by the National Natural Science Foundation of China.  相似文献   

20.
Large-scale Li1+x V3O8 nanobelts were successfully fabricated using filter paper as deposition substrate through a simple surface sol–gel method. The nanobelts were as long as tens of micrometers with widths of 0.4–1.0 μm and thickness of 50–100 nm. The nanobelts were characterized by X-ray diffration (XRD), Fourier infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The formation mechanism of the nanobelts was investigated, showing that the morphology of the nanobelts is mainly determined by the calcination temperature. Electrochemical properties of the Li1+x V3O8 nanobelts were characterized by charge–discharge experiments, and the results demonstrate that the Li1+x V3O8 nanobelts exhibit a high discharge capacity (278 mAh g−1) and excellent cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号