首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The interest on energy recovery from renewable sources is increasing due to the global warming and fossil fuels limitation. Biomass thermochemical conversion methods present some significant advantages such as zero net emissions and the use of agricultural by-products. In this work, a study of the catalytic and non-catalytic pyrolysis of an exhausted olive waste was carried out. The objective was to characterize the solid, liquid and gaseous phases in terms of their energy content. Two experimental series were conducted: uncatalyzed processes, studying the influence of temperature in the range 400–900 °C; and catalyzed ones, investigating the influence of temperature (500–800 °C) and quantity of catalyst (0–100 g). Also, the dolomite effectiveness as catalyst was evaluated. For this motive, consecutive experiments, without reactivating dolomite, were carried out (0–6 runs), and the yields of solids, liquids and gases were determined. It was found that increasing temperature leads in both series to a decrease in the solid and liquid yields and to an increase in the gas yield. The presence and amount of catalyst caused a significant decrease in the liquid phase yield and a high increase in the gas phase yield giving rise to a vast rise in hydrogen production. On the other hand, the catalyst proved to be stable and did not lose activity during at least six pyrolysis cycles.Finally, as a previous step to the design of industrial installations, a kinetic study of the process was performed, based on the generation of the principal gases, considering that these are formed through parallel independent first-order reactions, with different activation energy.  相似文献   

2.
《Fluid Phase Equilibria》2006,245(2):134-139
The vapor-hydrate equilibria were studied experimentally in detail for CH4 + C2H4 + tetrahydrofuran (THF) + water systems in the temperature range of 273.15–282.15 K, pressure range of 2.0–4.5 MPa, the initial gas–liquid volume ratio range of 45–170 standard volumes of gas per volume of liquid and THF concentration range of 4–12 mol%. The results demonstrated that, because of the presence of THF, ethylene was remarkably enriched in vapor phase instead of being enriched in hydrate phase for CH4 + C2H4 + water system. This conclusion is of industrial significance; it implies that it is feasible to enrich ethylene from gas mixture, e.g., various kinds of refinery gases or cracking gases in ethylene plant, by forming hydrate.  相似文献   

3.
This paper is part of a project which studies pyrolysis as an alternative for recycling printed circuit board (PCB); the sample (2.0 cm × 2.0 cm) was pyrolyzed under nitrogen atmosphere, at 300, 400, 500, 600 and 700 °C in a tubular type oven, maintaining 30 min, and during the pyrolysis process the organic part is decomposed to pyro-oils and pyro-gases, which can be used as fuels or chemical material resources: the solid residues of about 75–80 wt.%, liquid yields of ∼9.0 wt.% and gas yields of 12–14 wt.%. No significant influence of temperature was observed over 500 °C, however, there was certainly influence under 500 °C in both volatile substance. The pyro-oils have fairly high gross calorific values (∼30 kJ/kg), mainly with aromatic and with oxygenated compounds. The pyro-gas is very rich in CO, CO2, H2, CH4 and in small part of O2; after being purged it can be combusted for the pyrolysis self-sustain. The tensile strength decreases about 35% at 773 K, while the impact and tear strength increases above 773 K, and then decreases along with the temperature increase. The strength changes can offer guidance for used as a replacement for virgin fibres in SMC manufacture. The residues are better laminated can be easily liberated for metals recovery.  相似文献   

4.
Plastic wastes coming from a waste packaging separation and classification plant have been pyrolysed in a semibatch nonstirred autoclave, swept by a continuous flow of N2. The plastic waste contains 39.5% PE, 34.2% PP, 16.2% PS and EPS, and some other minor materials. Temperatures in the range 400–600 °C have been explored, and it has been found that over 460 °C total thermal decomposition of the waste plastics takes place. Three catalysts have been tested: HZSM-5, red mud and AlCl3. Solid yields about 5–7%, liquid yields in the range 40–70% and gas yields in the range 12–24% were obtained. The liquid products were a mixture of C5–C20 compounds with a very high proportion of aromatics (>70%). Such liquids contain significant amounts of valuable chemicals such as styrene (20–40%), toluene (9–15%) and ethylbenzene (7–16%) and have rather high GCV (40–43 MJ kg−1). Thermal pyrolysis oils were a wax-like product which solidified at room temperature, whereas the oils obtained with any of the catalysts were less viscous and maintained in liquid state at room temperature. HZSM-5 favoured gas production and, increased the aromaticity and decreased the carbon number of the oils. AlCl3 did not modify pyrolysis yields but gave rise to lighter liquids. Red mud produced higher liquid yields and the liquids were less viscous, but it was not observed a clear effect on the carbon number of the oils.  相似文献   

5.
Glycerol-based liquid membranes immobilized in the pores of hydrophilic microporous hollow fibers have been studied for selective separation of CO2 from a mixed gas (CO2, N2) feed having low concentrations of CO2 characteristic of gases encountered in space walk and space cabin atmosphere. The immobilized liquid membranes (ILMs) investigated consist of sodium carbonate–glycerol or glycine-Na–glycerol solution. Based on the performances of such liquid membranes in flat hydrophilic porous substrates [Chen et al., Ind. Eng. Chem. Res. 38 (1999) 3489; Chen et al., Ind. Eng. Chem. Res. 39 (2000) 2447], hollow fiber-based ILMs were studied at selected CO2 partial pressure differentials (ΔpCO2 range 0.36–0.50 cmHg), relative humidities (RH range 45–100%), as well as carrier concentrations. The sodium carbonate concentration was primarily 1.0 mol/dm3; the glycine-Na concentration was 3.0 mol/dm3. The sweep gas was always dry helium and it flowed on the shell side. Very high CO2/N2 selectivities were observed with porous polysulfone microfiltration membranes as substrate. As in the case of flat film-based ILMs (see references above), feed side RH is an important factor determining the ILM performances. Generally, lower permeances and greater CO2/N2 selectivity values were observed at lower feed stream RHs. When the feed side average RH=60%, pCO2,f=0.005 atm and glycine-Na concentration was 3.0 M, the CO2/N2 separation factor observed was over 5000. Prolonged runs lasting for 300 h showed that the hollow fiber-based ILM permeation performances were stable.  相似文献   

6.
The physical characteristics of two modified novolac resins (carbonyl phenyl azo novolac resin; CPAN and 4-(4-hydroxyphenyl azo) benzyl ester novolac resin; HPDEN) bearing nitrogen and aromatic functional groups by diazo-coupling or esterification in the branch structure of phenol novolac resin were examined. Presence of the modifiers raised the phenolic decomposition temperature (5% weight loss) from 300 °C (pure Phenolic) to 330 °C and 380 °C, while the char residue increased from 45% to 56% and 68%, respectively. The kinetics for thermal degradation energies (Ea) also rose from 151 kJ/mol K to 254 kJ/mol K (CPAN) and 273 kJ/mol K (HPDEN). The retarded decomposition kinetics is attributed both to the increase of crosslink densities and high aromatic content in the derivative resins. On the other hand, the diazo-coupling or phenyl diazenyl ester produces non-combustible gases (N2, CO2 and CO) during formation of aromatic char which dilute the ambient oxygen gas. Both the production of gases and the retarded kinetics due to cross-linking are definitive for the improved flame resistance.  相似文献   

7.
The construction, optimization and use of simple and inexpensive gas analyzer for real time measurement of sulfur dioxide in gas streams are described. The analyzer consisted of three main components (i) a custom fabricated hollow fiber membrane (HFM) gas contactor, (ii) carrier solution which absorbs SO2 molecules from the gas stream in the HFM gas contactor and (iii) a flow-through detector placed downstream which continuously measures the changes occurred to the carrier solution upon absorption of SO2 molecules. The significant acidic properties of the produced sulfurous acid suggested pH and conductivity detectors to monitor the decrease in pH or the increase in the conductivity which constituted the basis for quantification of SO2 in the gas line. Aqueous potassium oxalate (10? 1 mol/L) and hydrogen peroxide (10? 3 mol/L) were used as carrier solutions in combination with pH and conductivity detectors, respectively. The analyzer equipped with pH detector provided linear potentiometric response to SO2 concentration up to 1000 ppm with Nernstian slop of 61 mV/log[SO2]. Excellent SO2 recoveries (97–108%) were obtained in the presence of several folds of potentially interfering acidic gases, i.e., CO2 and H2S. The conductivity detector provided linear response up to 2500 ppm. Under optimized conditions, both detectors offered several favorable performance characteristics such as (i) fast response and recovery times, (ii) excellent signal stability and reproducibility (RSD = 0.5%), (iii) intrinsic high selectivity to most common neutral gases, e.g., CH4, N2, O2, CO, etc. The suggested analyzer was applied successfully in monitoring the removal of SO2 from SO2–N2 gas mixtures with hollow fiber membrane contactor using distilled water or aqueous sodium hydroxide as stripping solvents.  相似文献   

8.
A new offline-pyrolysis rig has been designed to allow multifunctional experiments for preparative and analytical purposes. The system conditions can be set and monitored, e.g. temperature, its gradients and heat flux. Some special features include (1) high heating rates up to 120 °C/s with pyrolysis temperatures up to 850 °C at variable pyrolysis times and (2) the selection of different atmospheres during pyrolysis. A complete mass balance of products and reactants (gas, liquids and solids) by gravimetric methods and sequential chromatographic analyses was obtained.The pyrolytic behaviour and the decomposition products of lignin-related compounds were studied under different conditions: heating rates (from 2.6 °C/s up to 120 °C/s), pyrolysis temperatures at 500 °C and 800 °C in different atmospheres (N2, H2, and mixtures of N2 and acetylene). Kraft lignin, soda lignin, organosolv lignin, pyrolytic lignin from pine bio-oil, residues from biomass hydrolysis and fermentation were studied.The obtained pyrolysis products were classified into three general groups: coke, liquid phase and gas phase (volatile organic compounds (VOC) and permanent gases). The liquid fraction was analysed by GC–MS/FID. In addition, comprehensive two-dimensional GC was applied to further characterise the liquid fraction. VOCs were semi-quantified by a modified headspace technique using GC–MS/FID analysis. The micro-pyrolysis rig proved to be an efficient and useful device for complex pyrolysis applications.  相似文献   

9.
We have determined the intrinsic gas transport properties of He, H2, O2, N2, CH4, and CO2 for a 6FDA-durene polyimide as a function of pressure, temperature and aging time. The permeability coefficients of O2, N2, CH4, and CO2 decrease slightly with increasing pressure. The pressure-dependent diffusion coefficients and solubility coefficients are consistent with the dual-sorption model and partial immobilization. All the gas permeabilities increase with temperature and their apparent activation energies for permeation increase with increasing gas molecular sizes in the order of CO2, O2, N2, and CH4.The percentages of permeability decay after 280 days of aging are 22, 32, 36, 40, 42, and 30% for He, H2, O2, N2, CH4, and CO2, respectively. Interestingly, except for H2 (kinetic diameter of 2.89 Å), the percentages of permeability decay increase exactly in the order of He (kinetic diameter of 2.6 Å), CO2 (3.30 Å), O2 (3.46 Å), N2 (3.64 Å), and CH4 (3.80 Å). The apparent activation energies of permeation for O2, N2, CH4, and CO2 increase with aging because of the increases in activation energies of diffusion and the decreases in solubility coefficients. The activation-energy increase for diffusion is probably due to the decrease in polymeric molar volume because of densification during aging. The reduction in solubility coefficient indicates the available sites for sorption decreasing with aging because of the reduction of microvoids and interstitial chain space.  相似文献   

10.
《Fluid Phase Equilibria》2006,248(2):103-114
A thermodynamic model is presented to calculate N2 solubility in pure water (273–590 K and 1–600 bar) and aqueous NaCl solutions (273–400 K, 1–600 bar and 0–6 mol kg−1) with or close to experimental accuracy. This model is based on a semi-empirical equation used to calculate gas phase composition of the H2O–N2 system and a specific particle interaction theory for liquid phase. With the parameters evaluated from N2–H2O–NaCl system and using a simple approach, the model is extended to predict the N2 solubility in seawater accurately. Liquid phase density of N2–H2O–NaCl system at phase equilibrium and the homogenization pressure of fluid inclusions containing N2–H2O–NaCl can be calculated from this model. A computer code is developed for this model and can be downloaded from the website: www.geochem-model.org/programs.htm.  相似文献   

11.
Removal of acid gases such as CO2 and H2S from natural gas is essential for commercial, safety and environmental protection that demonstrate the importance of gas sweetening process. Ionic liquids (IL) have been highly demanded as a green solvent to remove acid gases from sour natural gas and capturing of CO2 from flue gases. In this work, the solubility of CO2 in 1-butyl-3-methylimidazolium acetate ([bmim][Ac]) is measured at temperatures (303.15, 328.15, 343.15) K and pressure range of (0.1 to 3.9) MPa. Moreover, the experiments are carried out for simultaneous measurements of (CO2 + H2S) (70% + 30% on a mole basis) solubility in the same ionic liquid at T = (303.15, 323.15, 343.15) K and a pressure range of (0.1 to 2.2) MPa. To model the solubility of acid gases in IL, both physical and chemical equilibria are applied so that the (vapour + liquid) equilibrium calculation is carried out through Cubic-Plus-Association (CPA) EoS. The reaction equilibrium thermodynamic model is used in liquid phase so that the chemical reaction is taking place between IL and acid gasses. The Henry’s and reaction equilibrium constants are obtained though optimization of the solubility data. Using CPA EOS, the pure parameters of [bmim][acetate] are optimised and consequently using these parameters, gas partial pressure calculation is performed for the (CO2 + IL) and (CO2 + H2S + IL) systems. For the (CO2 + IL) system, the percent average absolute deviation (AAD%) of 4.83 is resulted and for the (H2S + CO2 + IL) system the values of 18.8 and 13.7 are obtained for H2S and CO2, respectively.  相似文献   

12.
The thermodynamic properties of liquid (Au–Sb–Sn) alloys were studied with an electromotive force (EMF) method using the eutectic mixture of KCl/LiCl with addition of SnCl2 as a liquid electrolyte. Activities of Sn in the liquid alloys were measured at three cross-sections with constant molar ratios of Au:Sb = 2:1, 1:1, and 1:2 with tin in the concentration range between 5 at.% and 90 at.% from the liquidus of the samples up to 1073 K. The integral Gibbs excess energies and the integral enthalpies at 873 K were calculated by Gibbs–Duhem integration. Additionally liquid Au–Sb alloys have been measured at 913 K with the EMF method as no reliable data for the Gibbs excess energies have been found in literature. The eutectic mixture of KCl/LiCl with addition of SbCl3 has been used as an electrolyte for the measurements. The Gibbs excess energies from the (Au + Sb) system were necessary for the integration of the thermodynamic properties of the ternary (Au + Sb + Sn) system.  相似文献   

13.
The radiolysis of methane (0.7 MeV electron beam) was studied as a function of its concentration at two doses: 5 and 20 kGy. In both cases the G (–CH4) value raised with the increase of the substrate concentration. Thereby the yields observed at 20 kGy are much lower, because of recombination processes. Results are also reported on the conversion of the gas mixture CH4:CO2:He=1:1:1 into synthetic gas (H2/CO) at 500 °C, using two catalysts : (N5) and (N20), containing 5 wt% Ni and 20 wt% Ni, respectively, supported on γ-Al2O3. In an experimental series the catalysts (N5) and (N20) were treated by irradiation (4 MGy dose) before use. The highest conversion yields (above 35%) were observed by implementation of N5 and N20 catalyst at 500 °C under the influence of electron beam radiation.  相似文献   

14.
《Fluid Phase Equilibria》2005,227(1):135-143
Solid–liquid equilibria (SLE), have been measured from 270 K to the boiling temperature of the solvent for 10 binary mixtures of N-methyl-2-pyrrolidinone, with ethers (dipropyl ether, dibutyl ether, dipentyl ether, methyl 1,1-dimethylethyl ether, methyl 1,1-dimethylpropyl ether, ethyl 1,1-dimethylpropyl ether, 1,4-dioxane, tetrahydrofuran, tetrahydropyran, 18-crown-6) using a dynamic method. The solubility of N-methyl-2-pyrrolidinone in ethers is lower than in alcohols and generally decreases with an increase of the number of carbon atoms of ether chain. The highest intermolecular solute–solvent interaction is observed for the cyclic ethers and for methyl 1,1-dimethylethyl ether.Experimental solubility results are compared with values calculated by means of the Wilson, UNIQUAC ASM and two NRTL equations utilizing parameters derived from SLE results. The existence of a solid–solid first-order phase transition in 18-crown-6 ether has been taken into consideration in the calculations. The correlation of the solubility data has been obtained with the average root-mean-square deviation of temperature σT = 0.9 K with UNIQUAC ASM and two NRTL equations and 0.6 K with the Wilson equation.  相似文献   

15.
The constant-volume energy of combustion of crystalline anhydrous caffeine (C8H10N4O2) in α (lower temperature steady) crystal form was measured by a bomb combustion calorimeter, the standard molar enthalpy of combustion of caffeine at T = 298.15 K was determined to be −(4255.08 ± 4.30) kJ · mol−1, and the standard molar enthalpy of formation was derived as −(322.15 ± 4.80) kJ · mol−1. The heat capacity of caffeine in the same crystal form was measured in the temperature range from (80 to 387) K by an adiabatic calorimeter. No phase transition or thermal anomaly was observed in the above temperature range. The thermal behavior of the compound was further examined by thermogravimetry (TG), differential thermal analysis (DTA) over the range from (300 to 700) K and by differential scanning calorimetry (DSC) over the range from (300 to 540) K, respectively. From the above thermal analysis a (solid–solid) and a (solid–liquid) phase transition of the compound were found at T = (413.39 and 509.00) K, respectively; and the corresponding molar enthalpies of these transitions were determined to be (3.43 ± 0.02) kJ · mol−1for the (solid–solid) transition, and (19.86 ± 0.03) kJ · mol−1 for the (solid–liquid) transition, respectively.  相似文献   

16.
Room temperature ionic liquid (RTIL) was prepared on basis of N-methyl-N-butylpiperidinium bis(trifluoromethanesulfonyl)imide (PP14TFSI), which showed a wide electrochemical window (?0.1–5.2 V vs. Li+/Li) and is theoretically feasible as an electrolyte for batteries with metallic Li as anodes. The addition of vinylene carbonate (VC) improved the compatibility of PP14TFSI-based electrolyte towards lithium anodes and enhanced the formation of solid electrolyte interphase film to protect lithium anodes from corrosion. Accordingly, Li/LiFePO4 cells initially delivered a discharge capacity of about 127 mAh g?1 at a current density of 17 mA g?1 in the ionic liquid with the addition of VC and showed better cyclability than in the neat ionic liquid. Electrochemical impedance spectroscopy disclosed that the addition of VC enhanced Li-ion diffusion and depressed interfacial resistance significantly.  相似文献   

17.
《Vibrational Spectroscopy》2007,43(2):206-214
Solid deposits have been formed at 88 K and 10−1 Torr from ethanol–water gas collected above aqueous solutions of ethanol (EtOH) (0.6, 2, 4.5, 9 and 17 mol%). The composition of different gas mixtures varying between 1:16 and 1:0.8 EtOH:H2O are determined at 295 K using our experimental vapor–liquid equilibrium (VLE) data in combination with the Wilson model [28]. The Wilson constants derived at this temperature are Λ12 = 0.37(4) and Λ21 = 0.58(5). The concentration of EtOH in the ice mixture can be calculated using these data and a kinetic model of condensation. It is found to vary between 9 and 65 mol% EtOH. The ice mixtures are analyzed in situ in a modified cryostage by micro-Raman spectroscopy. The distinct vibrational signatures of pure EtOH, EtOH aqueous solutions and EtOH–ice mixtures are identified in the 400–3800 cm−1 spectral range. Internal vibrational motions of EtOH molecules are affected by temperature and concentration. The presence of amorphous EtOH–ice phases at 88 K is demonstrated by the characteristic vibrational signatures of the νOH stretching modes. The crystallization of an EtOH hydrate is proposed during annealing at ∼140 K of a 65 mol% EtOH–ice mixture. According to our preliminary X-ray diffraction work, this phase has apparently a distinct structure from that of solid EtOH or from EtOH–clathtrate structures usually found in frozen aqueous solutions. For ice mixtures of lower EtOH content, a distinct hydrate phase crystallizes at ∼170 K. These results suggest that ice mixtures obtained by vapor deposition reflect the existence of EtOH clusters of a distinctive structural nature with respect to those encountered in frozen aqueous mixtures.  相似文献   

18.
《Fluid Phase Equilibria》2006,239(1):16-25
In the present paper, a study of temperature behaviour of the liquid–liquid equilibrium in ternary systems N,N-dimethylformamide + 2-methylpentane + methanol and N,N-dimethylformamide + methylcyclohexane + methanol. The analysis of critical curves of the liquid–liquid equilibrium by means of the regular solution model was carried out. The acquired predictions were subsequently verified experimentally.  相似文献   

19.
Solid/liquid- and vapor-phase interactions between cellulose- and lignin (Japanese cedar milled wood lignin)-derived pyrolysis products were studied under the conditions of N2/600 °C/40–80 s. A dual-space closed ampoule reactor was used to eliminate the solid/liquid-phase interactions, and careful comparison of the resulting data with those of the pyrolysis of the mixed samples gave some insights into the solid/liquid- and vapor-phase interactions separately. With the solid/liquid-phase interactions, the tar yields from both cellulose and lignin increased with the decreasing yields of the char fractions in a short pyrolysis time of 40 s (primary pyrolysis stage). Most of the identified tar components from cellulose and lignin increased in their yields. The vapor-phase interactions were significant at a longer pyrolysis time of 80 s (secondary reaction stage) when the methoxyl groups of the lignin-derived volatiles were cleaved homolytically. The vapor-phase interactions accelerated the gas formation from the cellulose-derived volatiles with suppressing the vapor-phase char formation of the lignin-derived volatiles. The yields of methane and catechols from lignin also increased greatly instead of the formation of o-cresols. Most of these influences are explained with a proposed interaction mechanism, in which the cellulose-derived volatiles act as H-donors while the lignin-derived volatiles (radicals) act as H-acceptors.  相似文献   

20.
Here, we have measured the glass transition temperature (Tg) of the ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate–H2O mixed solutions as a function of H2O concentration (x mol% H2O). The glass-forming composition region was also determined. Contrary to the results of the quaternary ammonium type of ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate–H2O mixed solutions, we did not observed the multiple glass transition behaviour. We also measured the glassy Raman spectra of the solutions at T = 77 K. We find that the “nearly free” hydrogen bonded Raman band of water molecules in the aqueous [bmim][BF4] solution exists up to around x = 60 mol% H2O, even at T = 77 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号