首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the present work, characteristic features of the radiolytical intermediates produced in gamma-irradiated solid sulfamethazine (SMH) were investigated by electron spin resonance (ESR) spectroscopy. The heights of the resonance peaks, measured with respect to the spectrum baseline, were used to monitor microwave saturation, temperature and time-dependent kinetic features of the radical species contributing to the formation of recorded experimental ESR spectra. Three species having different spectroscopic and kinetic features were observed to be produced in gamma-irradiated SMH. SO2, which is the most sensitive group of radiation in the SMH molecule, was found to be at the origin of radiation-produced ionic radical species. Based on the experimental results derived from the present study, the applicability of ESR spectroscopy to radiosterilization of SMH was discussed. In the dose range of interest (0.5–10 kGy), the radiation yield of solid SMH was calculated to be very low (G=0.45) compared with those obtained for sulfonamide aqueous solutions (G=3.5–5.1). Based on these findings, it was concluded that SMH and SMH-containing drugs could be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilization.  相似文献   

2.
Angle-selection experiments of a spin soliton in randomly oriented ladder polydiacetylene were carried out by pulsed electron paramagnetic resonance (EPR) at W-band. EPR measurement using 94 GHz microwaves increased the difference in the resonance field due tog anisotropy of the spin soliton to allow the orientation dependence of transient nutation, electron nuclear double resonance (ENDOR) and spin relaxations to be investigated. The shape of theg anisotropy-resolved nutation spectrum was discussed on the basis of the EPR transition moments and the differences between spin relaxation times. Reliable assignments of hyperfine couplings to the β protons (Hβ) of the alkyl side chains were achieved with the support of W-band ENDOR measurements. No significant orientational dependence in theT 1 andT 2 processes was found in terms of isotropy of the Hβ-hyperfine interaction.  相似文献   

3.
The hyperfine structure has been resolved in the optically detected electron spin resonance (OD ESR) spectra of radical ion pairs generated by ionizing radiation at a low dopant concentration in a solid polyethylene matrix at room temperature. The different organic molecules that can capture electrons and holes were used as the dopants. The spin-lattice relaxation times T1 for radical ions of dopants were estimated to be tens of microseconds. The temperature dependence of OD ESR signal intensity indicates the diffusion-assisted mechanism of recombination of radical ion pairs in polyethylene.  相似文献   

4.
The anion and cation radicals of vitamin K1 and its analog menadione were characterized using the magnetic resonance techniques of Electron Nuclear Double Resonance (ENDOR), Electron Spin Echo Envelope Modulation (ESEEM), and Electron Paramagnetic Resonance (EPR) at X-band and 2 mm-band. Theg-factor anisotropy of the radicals at 2 mm-band allow them to be distinguished from each other in the solid state. Theg-factor matrix of the radical anion of vitamin K1 is virtually identical with that reported for the reduced A1 acceptor in green plant photosystem I thus demonstrating that reduced A1 is the anion radical of vitamin K1.  相似文献   

5.
A two-dimensional (2D) experiment that correlates electron-nuclear double resonance (ENDOR) and electron spin-echo envelope modulation (ESEEM) frequencies, useful for unraveling and assigning ENDOR and ESEEM spectra from different paramagnetic centers with overlapping EPR spectra, is presented. The pulse sequence employed is similar to the Davies ENDOR experiment with the exception that the two-pulse echo detection is replaced by a stimulated echo detection in order to enhance the resolution in the ESEEM dimension. The two-dimensional data set is acquired by measuring the ENDOR spectrum as a function of the time interval T between the last two microwave pulses of the stimulated echo detection scheme. This produces a series of ENDOR spectra with amplitudes that are modulated with T. Fourier transformation (FT) with respect to T then generates a 2D spectrum with cross peaks connecting spectral lines of the ESEEM and ENDOR spectra that belong to the same paramagnetic center. Projections along the vertical and horizontal axes give the three-pulse FT-ESEEM and ENDOR spectra, respectively. The feasibility of the experiment was tested by simulating 2D ENDOR-ESEEM correlation spectra of a system consisting of an electron spin (S = (1/2)) coupled to two nuclei (I(1) = I(2) = (1/2)), taking into account experimental conditions such as pulse durations and off-resonance irradiation frequencies. The experiment is demonstrated on a single crystal of Cu(2+) doped l-histidine (Cu-His), containing two symmetrically related Cu(2+) sites that at an arbitrary orientation exhibit overlapping ESEEM and ENDOR spectra. While the ESEEM spectrum is relatively simple and arises primarily from one weakly coupled (14)N, the ENDOR spectrum is very crowded due to contributions from two nonequivalent nitrogens, two chlorides, and a relatively large number of protons. The simple ESEEM projection of the 2D ENDOR-ESEEM correlation spectrum is then used to disentangle the ENDOR spectrum and resolve two sets of lines corresponding to the different sites. Copyright 2000 Academic Press.  相似文献   

6.
Nonlinear excitations such as solitons and polarons in conjugated polymers carry spins. In this case electron spin resonance (ESR) and electron-nuclear double resonance (ENDOR) provide unique methods to determine their wave functions. In this review article, the case of solitons in polyacetylene, CHx, and polarons in an electroluminescent polymer, poly(paraphenylene vinylene) (PPV) are discussed as typical examples. High-resolution proton ENDOR spectra, obtained with stretch-oriented samples, yield the half extension of the excitations of 18 carbon atoms and 4 phenyl rings for CHx and PPV, respectively. These extensions are well described by the theories in the case of finite electron correlation. In addition, light-induced ESR technique is shown to be useful in obtaining site-selective information of spin distribution in the case of PPV derivatives, as well as the excitation spectra of polarons.  相似文献   

7.

Abstract  

The photoinduced electron transfer from chlorophyll a through the interface of positively charged dioctadecyltrimethylammonium chloride (DODAC), neutral dipalmitoylphosphatidylcholine (DPPC) and negatively charged dihexadecylphosphate (DHP) headgroup of the lipid bilayers was studied. The photoinduced radicals were identified by electron spin resonance (ESR) and radical yields of chlorophyll a were determined by double integration of the ESR spectra. The formation of vesicles was identified indirectly by measuring change of the λ max value of optical absorption spectrophotometer from diethyl ether solution to vesicle solutions, and observed directly with scanning and transmission electron microscopic images. The interaction distance between chlorophyll a and interface water (D2O) determined by deuterium modulation depth with electron spin echo modulation (ESEM) showed a decreasing order DODAC > DPPC > DHP. The interface charge of each vesicle was determined with zeta potential measurement. The interface charge of the lipid bilayers affected the radical yields of chlorophyll a more critically than the interaction distance between chlorophyll a and interface water.  相似文献   

8.
The results of electron spin resonance (ESR) and electron nuclear double resonance (ENDOR) studies of a self-trapped hole (VK center) in SrF2 are reported. The g-factor and hyperfine interaction constants were determined for the flourine nuclei forming the center and for those in the nearest three different sites. The values of hyperfine interaction constants are intermediate to the known values for CaF2 and BaF2.  相似文献   

9.
Structural, electrical and magnetic measurements, as well as electron spin resonance (ESR) spectra, were used to characterise the single-crystalline CuCr1.6V0.4Se4 spinel and study the correlation between the negative magnetoresistance effect and magnon excitations. We established the ferromagnetic order below the Curie temperature T C ≈ 193 K, a p-type semiconducting behaviour, the ESR change from paramagnetic to ferromagnetic resonance at T C, a large ESR linewidth value and its temperature dependence in the paramagnetic region. Electrical studies revealed negative magnetoresistance, which can be enhanced with increasing magnetic field and decreasing temperature, while a detailed thermopower analysis showed magnon excitations at low temperatures. Spin–phonon coupling is explained within the framework of a complex model of paramagnetic relaxation processes as a several-stage relaxation process in which the V3+ ions, the exchange subsystem and conduction electron subsystem act as the intermediate reservoirs.  相似文献   

10.
A novel method that allows the determination of absolute signs of hyperfine coupling constants in polarized radical pair (RP) pulse electron-nuclear double resonance (ENDOR) spectra is presented, The variable mixing time (VMT) ENDOR method used here leads to a separation of ENDOR transitions originating from different electron spin manifolds by employing their dependence on the time-dependent parameters of the pulse sequence. The simple kinetic model of the RP VMT ENDOR experiment shows very good agreement with the experiments performed on the P 700 .+ A 1 .- RP in photosystem I. This method relies on the selective excitation of absorptive or emissive lines of one radical in the RP EPR spectrum and therefore requires high spectral resolution. This condition was fulfilled for the system studied at the low-field edge of the RP EPR spectrum obtained at Q-band. The method presented here has a very high sensitivity and does not require any equipment additional to the one used for RP pulse ENDOR. The VMT ENDOR method offers the possibility for selective suppression of signals from different electron spin manifolds.  相似文献   

11.
Using electron spin resonance (ESR) technique we have obtained data evidencing the existence of magnetic vortices in high-temperature superconductors at temperatures above the critical one T c. We have studied magnetic excitations in Bi2Sr2Ca2Cu3O10 single crystals above T c with the method of surface spin decoration. The surface layer of diphenylpicrylhydrazyl was used as a sensitive probe of magnetic field distortions. The temperature dependence of the ESR signal parameters has indicated that far above T c the magnetic flux of a sample is affected by the superconducting order parameter fluctuations while close to T c its changes are due to vortex-type excitations.  相似文献   

12.
Several experiments using pulse electron spin resonance (ESR) equipment reveal that homogeneous free induction decay (FID) signals are given by electron spins in polypyrrole (PPy). FID signals obtained from PPy are accurately fitted via single-exponential curves, thus indicating that PPy can be used as a standard sample for several experiments with pulse ESR. We particularly pay attention to the nutation phenomena resulting from two-pulse irradiation (θ-t−2θ-t) in the homogeneous systems. The analysis by the vector model suggests that the nutation curves are affected by spin-lattice relaxation. Such a tendency is actually observed for two types of PPy used as examples ofT 1 >T 2 andT 1T 2. Thus the fitting over the nutation curve can be utilized for estimatingT 1. We particularly point out that such a procedure can be advantageously performed for electron spins with a short spin-lattice relaxation time.  相似文献   

13.
Two-frequency continuous-wave and pulse EPR (electron paramagnetic resonance) spectroscopical techniques are applied to determine static and dynamic EPR parameters of Cu2+ ions in oxide and fluoride glasses. The investigations are focussed on the analysis of strain effects in the glassy matrices, the identification of the magnetic nuclei in the vicinity of Cu2+ ions as well as the determination of the dependence of the phase memory timeT M on temperature and resonance field. The results obtained by X-band continuous-wave EPR, X- and S-band echo-detected EPR, and X- and S-band electron spin echo envelope modulation studies of Cu2+-doped inorganic glasses yield information on the local symmetry of the Cu2+ coordination polyhedra, the chemical nature of the atoms in the second and higher coordination spheres, the distribution of the parameters of the static spin Hamiltonian and the low-temperature motions of the dopant-containing structural units. Special techniques like 2-D Mims ENDOR (electron nuclear double resonance) and hyperfine-correlated ENDOR are applied for the first time to doped inorganic glasses. From the spin relaxation measurements a stronger tendency of the Cu2+ ions to aggregate is found for fluoride glasses in comparison to aluminosilicate and phosphate glasses.  相似文献   

14.
The CuL2X2 (L = 7-chlor-l,3-dihydro-3-hydroxi-5-phenyl-2H-l,4-benzodiazepin-2-one, also known as oxazepam, X = Cl, Br) complexes were prepared and investigated by ESR (electron spin resonance) method. Powder ESR spectra of CuL2X2 compounds at room temperature show the presence of monomeric species having an axial symmetry with a small rhombic distortion. In case of compounds with Cl there is a superposition of two nonequivalent mononuclear species, one with adx2 - y2 d_{x^2 - y^2 } ground state and another with adz2 d_{z^2 } ground state. In pyridine (Py) and dimethylformamide (DMF) solutions the monomeric species prevail. Two different monomeric species, one with pseudotetrahedral (Td) and the other with elongated tetrahedral-octahedral symmetry, were evidenced in DMF solutions adsorbed on NaY zeolite. In Py-DMF solutions two monomeric species were also identified. Dimeric species appear in DMF and Py solutions adsorbed on NaY zeolite through the coordination of two Cu(II) ions at the same keto-oxygen from one oxazepam molecule.  相似文献   

15.
82 , Y@C82, and La@C82 in frozen solutions. We were able to determine the g tensors of these molecules by analysing magnetic field spectra at X-band (9.5 GHz) and W-band (94 GHz) frequencies. Moreover, in Y@C82 we have investigated the hyperfine interaction of the 89Y nuclear spin (I=1/2) with the electron spin on the C82 cage. The principal values of the hyperfine tensor A and the relative orientation of g and A tensors were determined by applying three- and four-pulse electron spin echo envelope modulation techniques (ESEEM). Received: 3 September 1997/Accepted: 10 November 1997  相似文献   

16.
1D and 2D five-pulse ESEEM experiments on a PO 3 2? center in γ-irradiated betaine phosphite are presented to study the protons bound to the radical in more detail. The ESEEM results are in accordance with previous ENDOR investigations. From the 2D fivepulse ESEEM experiments the1H ENDOR assignment in the ferroelectric ordered state of betaine phosphite could be completed. Additionally, the occurrence of ordered proton states in the disordered paraelectric high-temperature phase and of disordered proton states in the ordered ferroelectric low-temperature phase as well could be observed due to the enhanced resolution of the 2D method.  相似文献   

17.
A multiextreme (high-field, low-temperature, high-pressure and nanoscale) electron spin resonance (ESR) measurement system is under development in Kobe. In this connection, our recent development is introduced and two applications of our high-frequency high-field ESR are described. High-frequency high-field ESR measurements of dioptase (Cu6Si6O18·6H2O), which has an interesting antiferromagnetic Cu2+ network, have been performed using a pulsed magnetic field of up to 55 T. Antiferromagnetic resonances (AFMR) are clearly observed at 4.2 K with the light sources of up to 1017 GHz. However, a deviation from the conventional two-sublattice AFMR theory is observed in the high field. Temperature dependence of the X-band and high-frequency ESR has been also observed in the triangular lattice antiferromagnet EtMe3P[Pd(dmit)2]2 which shows the spin-Peierls-like transition below T c = 25 K. The preliminary field dependence of the spin gap estimated from the analyses of our ESR results has been shown in connection with the previous magnetic susceptibility results.  相似文献   

18.
Temperature-dependent electron spin resonance (ESR) measurements of two low-dimensional quantum spin systems, theS = 1/2 spin-ladder system Cu2(1,4-diazacycloheptane)2Cl4 (Cu2(C5H12N2)2Cl4) and the gaplessS = 1 bond-alternating one-dimensional antiferromagnettrans-Ni(333-tet)(N3)(ClO4), have been performed. X-band electron spin resonance (ESR) measurements of single-crystal Cu2(C5H12N2)2Cl4 show the increase of linewidth and anisotropicg-shifts below 8 K similar to those known for one-dimensional antiferromagnet. On the other hand, Ni(333-tet)(N3)(ClO4) has broad line-width and ESR has been observed for the first time by our high-field ESR. Its linewidth increases as the temperature is decreased, while theg-shift seems to be isotropic and theg-value decreases as the temperature is decreased. Thisg-shift can be connected to the quantum fluctuation of the system.  相似文献   

19.
In the present study, the spectroscopic features of the radiolytic intermediates that were produced in gamma-irradiated (5, 10, 25 and 50?kGy) sulfamethoxazole (SMX) have been investigated by electron spin resonance (ESR) spectroscopy and the radiation sterilization feasibility of SMX by ionizing radiation was examined. Gamma-irradiated SMX exhibited a complex ESR spectrum consisting of 13 resonance lines where spectral parameters for the central resonance line were found to be g?=?2.0062 and ΔHpp?=?0.6?mT. The radiation yield of SMX was calculated to be relatively low (G?=?0.1) by ESR spectroscopy and no meaningful difference was observed in the comparison of unirradiated and 50?kGy gamma irradiated SMX by the Fourier transform infrared (FT-IR) technique, confirming that SMX is a radioresistive material. Although SMX could not be accepted to be a good dosimetric material, the identification of irradiated SMX from the unirradiated sample was possible even for the low absorbed radiation doses and for a relatively long time (three months) after the irradiation process. Decay activation energy of the radical species, which is mostly responsible for the central intense resonance line, is calculated to be 45.15?kJ/mol by using the signal intensity decay data derived from annealing studies. Four radical species with different spectroscopic properties were accepted to be responsible for the ESR spectra of gamma-irradiated SMX, by simulation calculations. It is concluded that SMX and SMX-containing drugs can be sterilized by gamma radiation and ESR spectroscopy is an appropriate technique for the characterization of these induced radical intermediates during the gamma irradiation process of SMX. Toxicology tests should also be done for its safe usage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号