首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of residual glycerol from biodiesel synthesis by Klebsiella pneumoniae BLh-1 was investigated in this study. Batch and fed-batch cultivations were performed in bioreactors under anaerobic and oxygen limitation conditions. Results of batch cultivations showed that the main product was 1,3-propanediol (1,3-PD) in both conditions, although the higher yields and productivities (0.46 mol mol?1 glycerol and 1.22 g?L?1?h?1, respectively) were obtained under anaerobic condition. Large amounts of ethanol were also produced under batch anaerobic condition, peaking at 12.30 g?L?1. Batch cultivations under oxygen limitation were characterized by faster growth kinetics, with higher biomass production but lower conversions of glycerol into 1,3-PD, with yields and productivities of 0.33 mol mol?1 glycerol and 0.99 g?L?1?h?1, respectively. The fed-batch cultivations were carried out in order to investigate the effects of feeding of raw glycerol on cells. Fed-batch under anaerobiosis showed that 1,3-PD and ethanol concentrations increased with the feeding rate, with maximal productions of 26.12 and 19.2 g?L?1, respectively. The oxygen limitation conditions diverted the bacterium metabolism to an elevated lactic acid formation, reaching 59 g?L?1 in higher feeding rates of glycerol, but lowering the production of ethanol.  相似文献   

2.
Ordered Nanoporous Carbon-Based SPME and Determination by GC   总被引:1,自引:0,他引:1  
CMK-1 (carbon mesoporous from Korea) type ordered nanoporous carbon was investigated as a novel solid-phase microextraction fiber for the first time. The microextraction process was coupled with GC-FID and used to extract benzene, toluene, ethylbenzene and xylenes (BTEX) from the head space of the solution samples. Prepared fibers featured advantages like easy and fast preparation, high thermal and mechanical stability in which a fiber could be used for more than 60 tests. Employing Taguchi method and orthogonal array design; OA16 (45), the HS-SPME of BTEX was optimized. Under the optimized conditions for all BTEX components, the linearity was from 3 to 800 μg L?1, the relative standard deviation (RSD%) of the method was between 4.2 and 9.4% and limit of detections was between 0.27 and 1.1 μg L?1. The recovery values were from 87.1 to 106.2% in water samples. Finally, the applicability of the proposed method was evaluated by the extraction and determination of BTEX in the water and petrochemical samples.  相似文献   

3.
A pressure-controlled headspace solid-phase microextraction (PC-HS-SPME) setup was developed, by reconsidering the strengths and weaknesses points of the similar reported systems. The new setup was coupled with gas chromatography–flame ionization detection (GC–FID) for direct analysis of benzene, toluene, ethylbenzene and xylene (BTEX) in contaminated soils, without any sample preparation step. The important experimental factors, affecting the performance of the method, including volumes of extraction and vacuum vials, type of SPME fiber, extraction time and temperature, moisture content of the sample, and sonication time were studied and optimized. Under the optimal conditions, good linearity of the calibration curves (R2 > 0.997) was obtained in the concentration range of 0.1–20,000 ng g?1. The limits of detections were found to be 0.001–0.08 ng g?1. The relative standard deviations, for six repetitive analyses of 100 ng g?1 BTEX, were obtained to be 5.7–12.3%. The PC-HS-SPME–GC–FID procedure was successfully applied for the extraction and determination of BTEX in the polluted soil samples.  相似文献   

4.
Excessive and uncontrolled exposures of the workers to benzene, toluene, ethylbenzene and xylene (BTEX) have currently raised great concerns among industrial hygienist all over the world. Therefore, the effective monitoring of such exposures is assumed to be of prime importance. A cold fiber solid-phase microextraction device based on a cooling capsule as a cooling unit and CO2 as a coolant was applied to quantitatively analyze BTEX in aqueous samples. A gas chromatography with flame ionization detection was recruited to analyze the target analytes, which had been identified according to their retention times. Several factors such as coating temperature, extraction time and temperature, sample volume and sodium content were optimized. Two modes of extraction, i.e., headspace (HS) and headspace cold fiber (HS-CF) in SPME, were investigated and compared under optimized conditions. The results revealed that HS-CF-SPME has the most appropriate outcome for the extraction of BTEX from aqueous samples. Under the optimized conditions, the calibration curves were linear within the range of 0.2–500 ng ml?1 and the detection limits were between 0.02 and 0.07 ng ml?1.The intraday relative standard deviations was lower than about 10%. The method was successfully applied to the determination of BTEX in urine samples with good recovery.  相似文献   

5.
Marine microorganisms that are obtained from hydrothermal vent sediments present a great metabolic potential for applications in environmental biotechnology. However, the work done regarding their applications in engineered systems is still scarce. Hence, in this work, the sulfate reduction process carried out by a marine microbial community in an upflow anaerobic sludge blanket (UASB) reactor was investigated for 190 days under sequential batch mode. The effects of 1000 to 5500 mg L?1 of SO4 ?2 and the chemical oxygen demand (COD)/SO4 ?2 ratio were studied along with a kinetic characterization with lactate as the electron donor. Also, the feasibility of using the sulfide produced in the UASB for copper precipitation in a second column was studied under continuous mode. The system presented here is an alternative to sulfidogenesis, particularly when it is necessary to avoid toxicity to sulfide and competition with methanogens. The bioreactor performed better with relatively low concentrations of sulfate (up to 1100 mg L?1) and COD/SO4 ?2 ratios between 1.4 and 3.6. Under the continuous regime, the biogenic sulfide was sufficient to precipitate copper at a removal rate of 234 mg L?1 day?1. Finally, the identification of the microorganisms in the sludge was carried out; some genera of microorganisms identified were Desulfitobacterium and Clostridium.  相似文献   

6.
This study investigated the feasibility to produce biohydrogen of a mechanically stirred anaerobic sequencing batch biofilm reactor (AnSBBR) treating sucrose-based synthetic wastewater. The bioreactor performance (30 °C) was evaluated as to the combined effect of fill time (2, 1.5, and 1 h), cycle length (4, 3, and 2 h), influent concentration (3,500 and 5,250 mg chemical oxygen demand (COD)?L?1) and applied volumetric organic load (AVOLCT from 9.0 to 27.0 g COD L?1 d?1). AVOLs were varied according to influent concentration and cycle length (t C). The results showed that increasing AVOLCT resulted in a decrease in sucrose removal from 99 to 86 % and in improvement of molar yield per removed load (MYRLS.n) from 1.02 mol H2?mol carbohydrate?1 at AVOLCT of 9.0 g COD L?1 d?1 to maximum value of 1.48 mol H2?mol carbohydrate?1, at AVOLCT of 18.0 g COD L?1 d?1, with subsequent decrease. Increasing AVOLCT improved the daily molar productivity of hydrogen (MPr) from 15.28 to 49.22 mol H2?m?3 d?1. The highest daily specific molar productivity of hydrogen (SMPr) obtained was 8.71 mol H2?kg TVS?1 d?1 at an AVOLCT of 18.0 g COD L?1 d?1. Decreasing t C from 4 to 3 h decreased sucrose removal, increased MPr, and improved SMPr. Increasing influent concentration decreased sucrose removal only at t C of 2 h, improved MYRLS,n and MPr at all t C, and also improved SMPr at t C of 4 and 3 h. Feeding strategy had a significant effect on biohydrogen production; increasing fill time improved sucrose removal, MPr, SMPr, and MYRLS,n for all investigated AVOLCT. At all operational conditions, the main intermediate metabolic was acetic acid followed by ethanol, butyric, and propionic acids. Increasing fill time resulted in a decrease in ethanol concentration.  相似文献   

7.
The anaerobic treatment of raw vinasse in a combined system consisting in two methanogenic reactors, up-flow anaerobic sludge blanket (UASB) + anaerobic packed bed reactors (APBR), was evaluated. The organic loading rate (OLR) was varied, and the best condition for the combined system was 12.5 kg COD m?3day?1 with averages of 0.289 m3 CH4 kg COD r?1for the UASB reactor and 4.4 kg COD m?3day?1 with 0.207 m3 CH4 kg COD r?1 for APBR. The OLR played a major role in the emission of H2S conducting to relatively stable quality of biogas emitted from the APBR, with H2S concentrations <10 mg L?1. The importance of the sulphate to COD ratio was demonstrated as a result of the low biogas quality recorded at the lowest ratio. It was possible to develop a proper anaerobic digestion of raw vinasse through the combined system with COD removal efficiency of 86.7% and higher CH4 and a lower H2S content in biogas.  相似文献   

8.
《Analytical letters》2012,45(14):2393-2405
Abstract

The use of headspace solid‐phase microextraction (HS‐SPME) to determine benzene, toluene, ethylbenzene, and xylenes (BTEX) in foundry molding sand, specifically a “green sand” (clay‐bonded sand) was investigated. The BTEX extraction was conducted using a 75 µM Carboxen‐polydimethylsiloxane (CAR‐PDMS) fiber, which was suspended above 10 g of sample. The SPME fiber was desorbed in a gas chromatograph injector port (280°C for 1 min) and the analytes were characterized by mass spectrometry. The effects of extraction time and temperature, water content, and clay and bituminous coal percentage on HS‐SPME of BTEX were investigated. Because green sands contain bentonite clay and carbonaceous material such as crushed bituminous coal, a matrix effect was observed. The detection limits for BTEX were determined to be ≤0.18 ng g?1 of green sand.  相似文献   

9.
In a previous work, a continuous simultaneous saccharification and fermentation process to produce ethanol from cassava starch was studied, using a set of fixed-bed reactors. The biocatalyst consisted of glucoamylase immobilized in silica particles and co-immobilized with S. cerevisiae in pectin gel. Using 3.8 U mL?1 reactor and 0.05 gwet yeast mL?1 reactor at start-up, starch hydrolysis was the rate-limiting step. Maximum ethanol productivity was 5.8 gethanol L?1 h?1, with 94.0% conversion of total reducing sugars (TRS) and 83.0% of the ethanol theoretical yield. In this work, the molar mass of the substrate and the biocatalyst particle size were reduced in an attempt to improve the bioreactor performance. The diameters of silica and pectin gel particles were reduced from 100 μm and 3–4 mm, respectively, to 60 μm and 1–1.5 mm, and the degree of substrate prehydrolysis by α-amylase was increased. The bioreactor performance was assessed for different loads of immobilized glucoamylase (2.1, 2.8, and 3.8 U mL?1 reactor), for the same initial cell concentration (0.05 gwet yeast.mL?1 reactor). Feeding with 154.0 g L?1 of TRS and using 3.8 U mL?1 reactor, fermentation became the rate-limiting step. Productivity reached 11.7 g L?1 h?1, with 97.0% of TRS conversion and 92.0% of the ethanol theoretical yield. The reactor was operated during 275 h without any indication of destabilization.  相似文献   

10.
An anaerobic sequencing batch biofilm reactor (AnSBBR—total volume 7.5 L; liquid volume 3.6 L; treated volume per cycle 1.5 L) treated sucrose-based wastewater to produce biohydrogen (at 30 °C). Different applied volumetric organic loads (AVOL of 9.0, 12.0, 13.5, 18.0, and 27.0 kg COD m?3 day?1), which were varied according to the influent concentration (3,600 and 5,400 mg COD L?1) and cycle length (4, 3, and 2 h), have been used to assess the following parameters: productivity and yield of biohydrogen per applied and removed load, reactor stability, and efficiency. The removed organic matter (COD) remained stable and close to 18 % and carbohydrates (sucrose) uptake rate remained between 83 and 97 % during operation. The decrease in removal performance of the reactor with increasing AVOL, by increasing the influent concentration (at constant cycle length) and decreasing the cycle lengths (at constant influent concentrations), resulted in lower conversion efficiencies. Under all conditions, when organic load increased there was a predominance of acetic, propionic, and butyric acid as well as ethanol. The highest concentration of biohydrogen in the biogas (24–25 %) was achieved at conditions with AVOL of 12.0 and 13.5 kg COD m?3 day?1, the highest daily production rate (0.139 mol H2?day?1) was achieved at AVOL of 18.0 kg COD m?3 day?1, and the highest production yields per removed and applied load were 2.83 and 3.04 mol H2?kg SUC?1, respectively, at AVOL of 13.5 kg COD m?3 day?1. The results indicated that the best productivity tends to occur at higher organic loads, as this parameter involves the “biochemical generation” of biogas, and the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves “biochemical consumption” of the substrate.  相似文献   

11.
Batch cultivation of Azadirachta indica hairy roots was carried out in different liquid-phase bioreactor configurations (stirred-tank, bubble column, bubble column with polypropylene basket, and polyurethane foam disc as root supports) to investigate possible scale-up of the A. indica hairy root culture for in vitro production of the biopesticide azadirachtin. The hairy roots failed to grow in the conventional bioreactor designs (stirred tank and bubble column). However, modified bubble column reactor (with polyurethane foam as root support) configuration facilitated high-density culture of A. indica hairy roots with a biomass production of 9.2 g l?1dry weight and azadirachtin yield of 3.2 mg g?1 leading to a volumetric productivity of azadirachtin as 1.14 mg l?1 day?1. The antifeedant activity in the hairy roots was also evaluated by no choice feeding tests with known concentrations of the hairy root powder and its solvent extract separately on the desert locust Schistocerca gregaria. The hairy root powder and its solvent extract demonstrated a high level of antifeedant activity (with an antifeedant index of 97 % at a concentration of 2 % w/v and 83 % at a concentration of 0.05 % (w/v), respectively, in ethanol).  相似文献   

12.
The paper deals with the exploitation of Ipomoea carnea as a feedstock for the production of bioethanol. Dilute acid pretreatment under optimum conditions (3 %H2SO4, 120 °C for 45 min) produced 17.68 g L?1 sugars along with 1.02 g L?1 phenolics and 1.13 g L?1 furans. A combination of overliming and activated charcoal adsorption facilitated the removal of 91.9 % furans and 94.7 % phenolics from acid hydrolysate. The pretreated biomass was further treated with a mixture of sodium sulphite and sodium chlorite and, a maximum lignin removal of 81.6 % was achieved. The enzymatic saccharification of delignified biomass resulted in 79.4 % saccharification with a corresponding sugar yield of 753.21 mg g?1. Equal volume of enzymatic hydrolysate and acid hydrolysate were mixed and used for fermentation with a hybrid yeast strain RPRT90. Fermentation of mixed detoxified hydrolysate at 30 °C for 28 h produced ethanol with a yield of 0.461 g g?1. A comparable ethanol yield (0.414 g g?1) was achieved using a mixture of enzymatic hydrolysate and undetoxified acid hydrolysate. Thus, I. carnea biomass has been demonstrated to be a potential feedstock for bioethanol production, and the use of hybrid yeast may pave the way to produce bioethanol from this biomass.  相似文献   

13.
In this work, cashew apple bagasse (CAB) was used for Saccharomyces cerevisiae immobilization. The support was prepared through a treatment with a solution of 3% HCl, and delignification with 2% NaOH was also conducted. Optical micrographs showed that high populations of yeast cells adhered to pre-treated CAB surface. Ten consecutive fermentations of cashew apple juice for ethanol production were carried out using immobilized yeasts. High ethanol productivity was observed from the third fermentation assay until the tenth fermentation. Ethanol concentrations (about 19.82–37.83 g L?1 in average value) and ethanol productivities (about 3.30–6.31 g L?1 h?1) were high and stable, and residual sugar concentrations were low in almost all fermentations (around 3.00 g L?1) with conversions ranging from 44.80% to 96.50%, showing efficiency (85.30–98.52%) and operational stability of the biocatalyst for ethanol fermentation. Results showed that cashew apple bagasse is an efficient support for cell immobilization aiming at ethanol production.  相似文献   

14.
A mechanically stirred anaerobic sequencing batch reactor containing anaerobic biomass immobilized on polyurethane foam cubes, treating low-strength synthetic wastewater (500 mg COD L?1), was operated under different operational conditions to assess the removal of organic matter and sulfate. These conditions were related to fill time, defined by the following feed strategies: batch mode of 10 min, fed-batch mode of 3 h and fed-batch mode of 6 h, and COD/[SO4 2?] ratios of 1.34, 0.67, and 0.34 defined by organic matter concentration of 500 mg COD L?1 and sulfate concentrations of 373, 746, and 1,493 mg SO4 2? L?1 in the influent. Thus, nine assays were performed to investigate the influence of each of these parameters, as well as the interaction effect, on the performance of the system. The reactor operated with agitation of 400 rpm, total volume of 4.0 L, and treated 2.0 L synthetic wastewater in 8-h cycles at 30?±?1°C. During all assays, the reactor showed operational stability in relation to the monitored variables such as COD, sulfate, sulfide, sulfite, volatile acids, bicarbonate alkalinity, and solids, thus demonstrating the potential to apply this technology to the combined removal of organic matter and sulfate. In general, the results showed that the 3-h fed-batch operation with a COD/[SO4 2?] ratio of 0.34 presented the best conditions for organic matter removal (89%). The best efficiency for sulfate removal (71%) was accomplished during the assay with a COD/[SO4 2?] ratio of 1.34 and a fill time of 6 h. It was also observed that as fill time and sulfate concentration in the influent increased, the ratio between removed sulfate load and removed organic load also increased. However, it should be pointed out that the aim of this study was not to optimize the removal of organic matter and sulfate, but rather to analyze the behavior of the reactor during the different feed strategies and applied COD/[SO4 2?] ratios, and mainly to analyze the interaction effect, an aspect that has not yet been explored in the literature for batch reactors.  相似文献   

15.
We studied the feasibility of the microaerobic process, in comparison with the traditional chemical absorption process (NaOH), on H2S removal in order to improve the biogas quality. The experiment consisted of two systems: R1, biogas from an anaerobic reactor was washed in a NaOH solution, and R2, headspace microaeration with atmospheric air in a former anaerobic reactor. The microaeration used for low sulfate concentration wastewater did not affect the anaerobic digestion, but even increased system stability. Methane production in the R2 was 14 % lower compared to R1, due to biogas dilution by the atmospheric air used. The presence of oxygen in the biogas reveals that not all the oxygen was consumed for sulfide oxidation in the liquid phase indicating mass transfer limitations. The reactor was able to rapidly recover its capacity on H2S removal after an operational failure. Bacterial and archaeal richness shifted due to changes in operational parameters, which match with the system functioning. Finally, the microaerobic system seems to be more advantageous for both technical and economical reasons, in which the payback of microaerobic process for H2S removal was 4.7 months.  相似文献   

16.
Xanthan gum production was studied using sugarcane broth as the raw material and batch fermentation by Xanthomonas campestris pv. campestris NRRL B-1459. The purpose of this study was to optimize the variables of sucrose, yeast extract, and ammonium nitrate concentrations and to determine the kinetic parameters of this bioreaction under optimized conditions. The effects of yeast extract and ammonium nitrate concentrations for a given sucrose concentration (12.1–37.8 g L?1) were evaluated by central composite design to maximize the conversion efficiency. In a bioreactor, the maximum conversion efficiency was achieved using 27.0 g L?1 sucrose, 2.7 g L?1 yeast extract, and 0.9 g L?1 NH4NO3. This point was assayed in a shaker and in a bioreactor to compare bioreaction parameters. These parameters were estimated by the unstructured kinetic model of Weiss and Ollis (Biotechnol Bioeng 22:859–873, 1980) to determinate the yields (Y P/S), the maximum growth specific rate (μ max), and the saturation cellular concentration (X*). The parameters of the model (μ max, X*, m, λ, α, and β) were obtained by nonlinear regression. For production of xanthan gum in a shaker, the values of μ max and Y P/S obtained were 0.119 h?1 and 0.34 g g?1, respectively, while in a bioreactor, they were 0.411 h?1 and 0.63 g g?1, respectively.  相似文献   

17.
Microbial fuel cells (MFCs) have potential to treat industrial wastewater containing organic compounds and simultaneously generate power. Organic compounds include textile dyes with various chromophore groups, which can be decolorized reductively by microorganisms under anaerobic conditions. In the present study, we examined the decolorization of Reactive Black 5 (RB5) azo dye and Reactive Blue 4 (RBL4) anthraquinone dye under open circuit potential in MFCs with graphite plate and graphite felt electrodes and a microbial consortium originally derived from bovine rumen fluid. RB5 dye was more than 90% decolorized in 120, 165, and 225 min at 50, 100, and 200 mg L?1 concentrations, respectively. RBL4 dye at 50 and 100 mg L?1 took 225 and 300 min to decolorize, while 200 mg L?1 RBL4 dye was not decolorized at all. Under closed circuit conditions, decolorization increased with decrease in external load, whereas current generation increased with external resistance. The results demonstrate that the reductive cleavage of the chromophore was more rapid with RB5 than with RBL4.  相似文献   

18.
In this study, polyaniline-co-poly(o-toluidine)/graphene oxide nanosheets composite was electrodeposited on the surface of a stainless steel wire as a new coating for headspace solid-phase microextraction of benzene, toluene, ethylbenzene and xylenes (BTEX) with gas chromatography–mass spectrometry. The characteristics of the new coating were evaluated by the scanning electron microscopy and Fourier transform infrared spectroscopy. To study the coating performance, the influence of various parameters such as deposition potential and time, concentration of the monomers and GONSs, desorption temperature and time, extraction temperature and time and ionic strength on BTEX extraction efficiency was investigated. At the optimum conditions, the linear ranges and detection limits (S/N?=?3) were found 0.01–50 and 0.001–0.05 ng mL?1, respectively. The intra-day and inter-day relative standard deviations (RSDs) at 0.5 ng mL?1 concentration level (n?=?5) using a single-fiber were from 5.4 to 8.3 and 7.5 to 10.3%, respectively. The fiber-to-fiber RSDs % (n?=?3) was between 8.4 and 12.5%. Finally, the development method was applied to the analysis of various real samples.  相似文献   

19.
This study evaluated the propionic acid (HPr) production from crude glycerol (CG) (5000 mg L?1) in an anaerobic fluidized bed reactor (AFBR). Grounded tire particles (2.8–3.35 mm) were used as support material for microbial adhesion. The reactor was operated with hydraulic retention times (HRT) varying from 8 to 0.5 h under mesophilic (30 °C) conditions. The HPr was the main metabolite produced, increasing in composition from 66.5 to 99.6% by decreasing the HRT from 8 to 0.5 h. Other metabolic products were 1,3-propanediol, with a maximum of 29.4% with an HRT of 6 h, ethanol, acetic, and butyric acids. The decrease in HRT from 8 to 0.5 h decreased the HPr yield, with a maximum of 0.48?±?0.06 g HPr g COD?1 and an HRT of 6 h, and favored HPr productivity, with a maximum of 4.09?±?1.24 g L?1 h?1 and HRT of 0.5 h. In the biogas, the H2 content increased from 12.5 to 81.2% by decreasing the HRT from 8 to 0.5 h. These results indicate the potential application of the AFBR for HPr production using an immobilized mixed culture.  相似文献   

20.
A fully automated method has been developed for determining eight macrocyclic musk fragrances in wastewater samples. The method is based on headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC-MS). Five different fibres (PDMS 7 μm, PDMS 30 μm, PDMS 100 μm, PDMS/DVB 65 μm and PA 85 μm) were tested. The best conditions were achieved when a PDMS/DVB 65 μm fibre was exposed for 45 min in the headspace of 10 mL water samples at 100 °C. Method detection limits were found in the low ng L?1 range between 0.75 and 5 ng L?1 depending on the target analytes. Moreover, under optimized conditions, the method gave good levels of intra-day and inter-day repeatabilities in wastewater samples with relative standard deviations (n?=?5, 1,000 ng L?1) less than 9 and 14 %, respectively. The applicability of the method was tested with influent and effluent urban wastewater samples from different wastewater treatment plants (WWTPs). The analysis of influent urban wastewater revealed the presence of most of the target macrocyclic musks with, most notably, the maximum concentration of ambrettolide being obtained in WWTP A (4.36 μg L?1) and WWTP B (12.29 μg L?1), respectively. The analysis of effluent urban wastewater showed a decrease in target analyte concentrations, with exaltone and ambrettolide being the most abundant compounds with concentrations varying between below method quantification limit (<MQL) and 2.46 μg L?1.
Figure
Scheme of a HS-SPME followed by GC-MS to determine macrocyclic musk fragrances in wastewater samples  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号