首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallization and glass transition kinetics of Se70−xGa30Inx (x=5, 10, 15, and 20) semiconducting chalcogenide glasses were studied under non-isothermal condition using a Differential Scanning Calorimeter (DSC). DSC thermograms of the samples were recorded at four different heating rates 5, 10, 15, and 20 K/min. The variation of the glass transition temperature (Tg) with the heating rate (β) was used to calculate the glass transition activation energy (Et) using two different models. Meanwhile, the variation of the peak temperature of crystallization (Tp) with β was utilized to deduce the crystallization activation energy (Ec) using Kissinger, Augis-Bennet, and Takhor models. Results reveal that Et decreases with increasing In content, while both Tg and Ec exhibit the opposite behavior, and the crystal growth occurs in one dimension. The variation of these thermal parameters with the average coordination number <Z> was also discussed, and the results were interpreted in terms of the type of bonding that In makes with Se. Assessment of thermal stability and glass forming ability (GFA) was carried out on the basis of some quantitative criteria and the results indicate that thermal stability is enhanced while the crystallization rate is reduced with the addition of In to Se-Ga glass.  相似文献   

2.
Magnetocaloric effect and refrigerant capacity of Gd-based Gd60FexCo30−xAl10 metallic glasses are investigated for x = 0, 10 , 20 and 30. It is found that the non-linearity of saturation magnetization in crystalline Co-Fe binary alloys can be transferred to the quaternary metallic glass. Whereas the magnetocaloric specific values of Gd60Co30Al10 are comparable in magnitude with those of other Gd-based metallic glasses, Fe addition leads to an increase of the saturation magnetization and refrigerator capacity with a maximum for x = 20. Simultaneously, the temperature of maximum isothermal change of magnetic entropy TΔSmax increases from 145 to 200 K with increasing Fe-content and also the halfwidth ΔTSmax/2 of the ΔS-T-curve is considerably broadened. Furthermore, the effect of thermal treatment slightly above the first crystallization event on the magnetocaloric effect are investigated, showing a lowering of the working temperature in the first place.  相似文献   

3.
The kinetics studies of a-Ga5Se95−xSbx (x=0, 1, 5, 10) is analyzed by an isothermal and non-isothermal technique. By isothermal technique the analysis of crystallization kinetics is taken at temperatures between the glass transition and crystallization. The activation energy of crystallization (ΔEc) and order parameter (n) are calculated by fitting the values of extent of crystallization (α) in the Avrami's equation. By non-isothermal technique crystallization kinetics of a-Ga5Se95−xSbx (x=0, 1, 5, 10) with different heating rates of 5, 10, 15 and 20 K/min have been studied by using the Differential Scanning Calorimeter (D.S.C.). The glass transition temperature, crystallization temperature at different heating rates and structural change during glass transition has been determined from an empirical relation. From the heating rate, the dependence of the glass transition and crystallization temperatures, the activation energy for structural relation (Δet), the activation energy of crystallization (ΔEc), and the order parameter (n) are calculated.  相似文献   

4.
A. Dahshan  H.H. Amer  K.A. Aly 《哲学杂志》2013,93(11):1435-1449
The effect is reported of varying cadmium concentration on the glass transition, thermal stability and crystallization kinetics of Ge20Se80? x Cd x (x = 2.5, 5, 7.5 and 10 at. %) glasses. Differential scanning calorimetry results under non-isothermal conditions for the studied glasses are reported and discussed. The values of the glass transition temperature (Tg ) and the peak temperature of crystallization (Tp ) were found to be dependent on heating rate and Cd content. From the heating rate dependence of Tg and Tp , the values of the activation energy for glass transition (Eg ) and the activation energy for crystallization (Ec ) were evaluated and their composition dependence discussed. The thermal stability of the glasses was evaluated using various thermal stability criteria such as ΔT, Hg and S. The stability calculations emphasize that the thermal stability decreases with increasing Cd content.  相似文献   

5.
Differential scanning calorimetry (DSC) has been employed to investigate the glass transition activation energy E g, thermal stability and glass-forming ability (GFA) of Se90In10? x Sb x (x = 0, 2, 4, 6, 8, 10) chalcogenide glasses. DSC runs were performed at six different heating rates. Well-defined endothermic and exothermic peaks were obtained at glass transition and crystallization temperature. The dependence of glass transition temperature T g on heating rate (α), as well as composition of Sb, has been studied. From the dependence of glass transition temperature on heating rate, the E g has been calculated on the basis of the Kissinger [Anal. Chem. 29 (1957) p.1702] and Moynihan [J. Phys. Chem. 78 (1974) p.267] models. Thermal stability has been monitored through the calculation of temperature differences T cT g, the stability parameter S, and the enthalpy released during crystallization H c. The GFA has been investigated on the basis of the Hruby parameter H r, which is strong indicator of GFA. Results for GFA are in good agreement with fragility index F i calculations, indicating that Se90In6Sb4 is an excellent glass-former.  相似文献   

6.
Differential scanning calorimetry (DSC) measurements were performed to investigate the kinetics of the structural relaxation in aged and unaged (rejuvenated) AsxSe100−x glasses with 0≤x≤40. The activation energy of the glass transition (Ea) of the aged and rejuvenated glasses was determined from the variation of the glass transition temperature (Tg) with the heating rates (β). Significant effect of prolonged aging of the glasses on the values Ea was observed. Evidence of transition from floppy to rigid phase is presented. The observed significant physical aging in samples with composition x<40 indicates the absence of the intermediate phase. The compositional dependence of Tg for aged and rejuvenated data was analyzed using the stochastic agglomeration theory.  相似文献   

7.
Bulk InxSe1−x (with x=5-25 at%) glasses were prepared using the melt-quench technique. Short range order(SRO) was examined by the X-ray diffraction using Cu(kα) radiation in the wave vector interval 0.28≤k≤6.5 A0−1.The SRO parameters have been obtained from the radial distribution function. The inter-atomic distance obtained from the first and second peak are r1=0.263 and r2=0.460 nm, which is equivalent In-Se and Se-Se bond length. The fundamental structural unit for the studied glasses is In2Se3 pyramid. Using the differential scanning calorimetry (DSC), the crystallization mechanism of InxSe1−x chalcogenide glass has been studied. The glass transition activation energy (Eg) is 289±0.3 kj/mol.There is a correlation amongst the glass forming ability, bond strength and the number of lone pair electrons. The utility of the Gibbs-Di Marzio relation was achieved by estimating Tg theoretically.  相似文献   

8.
Results of differential thermal analysis (DTA) under non-isothermal conditions on four glasses of BixSe100−x (x=5, 10, 15 and 25 at%) are reported and discussed. The glass transition temperatures (Tg), the onset crystallization temperatures (Tc) and the peak temperatures of crystallization (Tp) were found to be dependent on the compositions and the heating rates. From the dependence on the heating rates of (Tg) and (Tp), the activation energy for glass transition, Eg, and the activation energy for crystallization, Ec, are calculated and their composition dependence is discussed. The crystalline phases resulting from DTA and scanning electron microscopy (SEM) have been identified using X-ray diffraction. According to the Avrami exponent (n), the results show a one-dimensional growth for the composition Bi5Se95 and two-dimensional growth for the compositions Bi10Se90, Bi15Se85 and Bi25Se75. The kinetic parameters determined have made it possible to discuss the glass-forming ability.  相似文献   

9.
The structural parameters and the energetics of the Ni2+xMn1−xGa alloys have been investigated by the first-principles Exact Muffin Tin Orbital-Coherent Potential Approximation (EMTO-CPA) for 0.10<x<0.30. The difference in total energies (δE) between the low-temperature tetragonal phase and the high-temperature cubic phase has been considered as a qualitative indicator of the martensitic transformation temperature Tm. The qualitative behavior of δE with variation of x has been found to be in agreement with the experimentally observed variation of Tm with x. The elastic constants for the entire range of x have also been calculated and the determination of a relationship between δE and the elastic shear modulus has been attempted. It is seen that δE varies linearly with elastic shear modulus C′, qualitatively similar to the relation between Tm and C′. The energetics calculated with the EMTO method agrees quite well with the all-electron full-potential results ensuring the accuracy of the method. These results show that the EMTO-CPA method is one of the most reliable and accurate first-principles methods, in the context of off-stoichiometric alloys which undergo martensitic phase transformations.  相似文献   

10.
Thin films of samples of the glassy SxSe100−x system with 0 ≤ x ≤ 7.28 have been prepared by thermal evaporation technique at room temperature (300 K). X-ray investigations show that the structure of pure selenium (Se) does change seriously by the addition of small amount of sulphur S ≤7.28%. The lattice parameters were determined as a function of sulphur content. Results of differential thermal analysis (DTA) of the glassy compositions of the system SxSe100−x were discussed. The characteristic temperatures (Tg, Tc and Tm) were evaluated. Dark electrical resistivities, ρ, of SxSe100−x thin films with different thicknesses from 100 to 500 nm, were measured in the temperature range from 300 to 423 K. Two distinct linear parts with different activation energies were observed. The variation of electrical resistivity of examined compositions has been discussed as a function of the film thickness, temperature and the sulphur content. The application of Mott model for the phonon assisted hopping of small polarons gave the same two activation energies obtained from the resistivity temperature calculations.  相似文献   

11.
Crystallization process of Se85-xTe15Sbx (x = 2.7, 7.5, 10 and 15 at %) chalcogenide glasses has been studied by using differential scanning calorimetry (DSC) with different heating rates. These glasses are found to have a double glasses transition and overlapped crystalline phases for Se70Te15Sb15 glass while single glasses transition and single crystallization stage for other glasses. Glass transition temperature, Tg, onset crystallization temperature, Tc, and peak crystallization temperature, Tp, are found to be dependent on composition and heating rates. Values of various kinetic parameters such as activation energy of glass transition, Eg, activation energy of crystallization, Ec, Hurby number, Hr, thermal stability, Sp, rate constant, Kp, and Avrami exponent, n, are determined for the present systems. Results indicate that rate of crystallization is dependent on thermal stability and glass-forming ability. Crystallization mechanism occurs in two dimensions for studied compositions. Crystalline phases resulting from DSC and scanning electron microscopy have been identified by using X-ray diffraction.  相似文献   

12.
Piezoreflective experiments between 77 and 300°K are performed on Gax, In1?x Sb alloys. Eo and Eo + Δo transition energies, vs composition are determined. Band gap Eo variations, are obtained in good agreement with the two band dielectric model. The Δo splitting is observed to be linear with composition.The fundamental edge temperature coefficient β is also determined, it is found to vary linearly with composition.Eo and Eo + Δo energy determination permit one to deduce effective mass and ge value variation with composition.  相似文献   

13.
Differential scanning calorimetry (DSC) technique was used to study the kinetics of amorphous to crystalline transformation for GaxSe100−x glass system (x=0, 2.5 and 5 at%). The kinetic parameters of GaxSe100−x glass system under non-isothermal conditions are analyzed by the model-free and model-fitting models at different constant heating rates (5-50 K/min). A strong heating rate dependence of the effective activation energy of crystallization was observed. The analysis of the present data shows that the effective activation energy of crystallization is not constant but varies with the degree of crystallization and with temperature as well. The crystallization mechanisms examined using the local Avrami exponents indicate that one mechanism (volume nucleation with one-dimensional growth) is responsible for the crystallization process for heating rates 5-50 K/min for Se glass and two mechanisms (volume nucleation with two- and one-dimensional growth) are working simultaneously during the amorphous-crystalline transformation of the Ga2.5Se97.5 and Ga5Se95 glasses (5-50 K/min). The reaction model that may describe crystallization process of all the compositions of GaxSe100−x glass system is Avrami-Erofeev model (g(α)=[−ln(1−α)]1/n) with n=2 for Se glass. While for Ga2.5Se97.5 and Ga5Se95 glasses, the values of n are equal to 3 and 2 for the heating rates 5-20 and 35-50 K/min, respectively. A good agreement between the experimental and the reconstructed (α-T) curves has been achieved. The transformation from amorphous to crystalline phase in GaxSe100−x glass system demonstrates complex multi-step involving several processes.  相似文献   

14.
The structure, magnetic property and magnetocaloric effect of GdCo2−xAlx (x=0, 0.06, 0.12, 0.18, 0.24, 0.4) compounds have been investigated by X-ray diffraction (XRD) and magnetic measurement techniques. The experimental results show that the GdCo2−xAlx (x≤0.4) compounds are single phase with a Laves-phase MgCu2-type structure. The Curie temperature Tc initially increases, and then decreases with increasing Al content. The maximum value of Tc, 418 K, is reached for the compound with x=0.06. The magnetic entropy change, which is determined from the temperature and field dependence of the magnetization by the Maxwell relation, decreases almost linearly with increasing Al content.  相似文献   

15.
A number of Ge17Ga4Sb10S69−xSex (x = 0, 15, 30, 45, 60, and 69) chalcogenide glasses have been synthesized by a melt-quenching method to investigate the effect of the Se content on thermo-mechanical and optical properties of these glasses. While it was found that the glass transition temperature (Tg) decreases from 261 to 174 °C with increasing Se contents, crystallization temperature (Tc) peak only be observed in glasses with Se content of x = 45. It was evident from the measurements of structural and physical properties that changes of the glass network bring an apparent impact on the glass properties. Also, the substitution of Se for S in Ge–Ga–Sb glasses can significantly improve the thermal stability against crystallization and broaden the infrared transmission region.  相似文献   

16.
Differential scanning calorimeter (DSC) and X-ray diffraction (XRD) techniques were employed here to investigate the glass transition behavior and crystallization kinetics of Se80−x Te20Snx (x=0.0, 2.5 and 5) alloys, which were prepared by the conventional melt quenching method. Two exothermic peaks have been observed in the DSC scans for the samples that contain Sn. Three crystalline phases (Se7.68Te0.32, SnSe and SnTe) were classified after heat treating the Se77.5 Te20Sn2.5 glass at temperature corresponding to the second crystallization peaks for 3 h. All the characteristic temperatures such as glass transition temperature (Tg), crystallization temperature (Tc) and crystallization peak temperatures (Tp) were found to depend on both the heating rate and the composition. This dependence has been used to deduce the activation energy of the glass transition (Eg), the activation energy of crystallization (Ec), the Avrami exponent (n), thermal stability and the fragility index (Fi).  相似文献   

17.
Investigations on the electrical switching behavior and thermal studies using Alternating Differential Scanning Calorimetry have been undertaken on bulk, melt-quenched Ge22Te78−xIx (3≤x≤10) chalcohalide glasses. All the glasses studied have been found to exhibit memory-type electrical switching. The threshold voltages of Ge22Te78−xIx glasses have been found to increase with the addition of iodine and the composition dependence of threshold voltages of Ge22Te78−xIx glasses exhibits a cusp at 5 at.% of iodine. Also, the variation with composition of the glass transition temperature (Tg) of Ge22Te78−xIx glasses, exhibits a broad hump around this composition. Based on the present results, the composition x=5 has been identified as the inverse rigidity percolation threshold at which Ge22Te78−xIx glassy system exhibits a change from a stressed rigid amorphous solid to a flexible polymeric glass. Further, a sharp minimum is seen in the composition dependence of non-reversing enthalpy () of Ge22Te78−xIx glasses at x=5, which is suggestive of a thermally reversing window at this composition.  相似文献   

18.
Tellurite glasses of the system (100–x)TeO2xBaO, with x = 05, 10, 15 and 20 wt%, have been prepared and studied by differential scanning calorimetry (DSC). The crystallization kinetics of the glasses were investigated under non-isothermal conditions, applying the formal theory of transformations for heterogeneous nucleation to the experimental data obtained by DSC, using continuous-heating techniques. In addition, from the dependence of the glass-transition temperature (T g) on heating rate, the activation energy for the glass transition was derived. Similarly, the activation energy of the crystallization process was determined and the crystallization mechanism characterized. The thermal stability of these glasses are considered in terms of the characteristic temperatures, T g and T in (the onset temperature of crystallization), via ΔT = T in?T g and a kinetic parameter K(T g). The results confirm that thermal stability decreases with increasing BaO content. The phases into which the glass crystallizes have been identified by X-ray diffraction. Diffractograms of the transformed material indicate the presence of microcrystallites of α-TeO2, γ-TeO2 and BaTeO3 in the remaining amorphous matrix.  相似文献   

19.
Se58Ge42−x Pb x (9≤x≤20) glasses have been prepared using conventional melt quenching technique. Differential Scanning Calorimetric (DSC) measurements show single glass transition and double crystallization, which indicate the occurrence of phase separation in the samples. The phases present in the samples were identified using XRD. The kinetics of the glass transition has been studied in terms of the variation of glass transition temperature with composition and heating rate. In addition to this, activation energy of the glass transition (E t ) has also been evaluated and its composition dependence is also investigated. The thermal stability of these glasses has been investigated using various stability criteria: Deiztal first glass criterion, ΔT, Saad and Poulain weighted thermal stability, H′ and the S-parameter. The values of these parameters were obtained using various characteristic temperatures such as the glass transition temperature, T g , the onset temperature of crystallization, T c , and the peak crystallization temperature, T p . The values of stability parameters show that the phase corresponding to second crystallization is more stable than the phase corresponding to first one. The stability in terms of the lead (Pb) content has been determined considering the values of stability parameters of the phase corresponding to second peak. It was found that the stability increases with the lead content.  相似文献   

20.
X-ray powder diffraction and magnetization measurements have been carried out on Rh2Mn1+xSn1−x (0≤x≤0.3) alloys. The alloys, which crystallize in the L21 structure, were found to exhibit ferromagnetic behavior. The lattice constant a at room temperature decreases with increasing x, whereas the Curie temperature TC decreases linearly. At 5 K the magnetic moment per formula unit first increases with increasing x and then saturates for x≥0.2. The experimental results are discussed in terms of the influence of the Mn-Mn exchange interactions between the Mn atoms on the Sn and Mn sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号