首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The monitoring of phenolic compounds in wastewaters in a simple manner is of great importance for environmental control. Here, a novel screen printed laccase-based microband array for in situ, total phenol estimation in wastewaters and for water quality monitoring without additional sample pre-treatment is presented. Numerical simulations using the finite element method were utilized for the characterization of micro-scale graphite electrodes. Anodization followed by covalent modification was used for the electrode functionalization with laccase. The functionalization efficiency and the electrochemical performance in direct and catechol-mediated oxygen reduction were studied at the microband laccase electrodes and compared with macro-scale electrode structures. The reduction of the dimensions of the enzyme biosensor, when used under optimized conditions, led to a significant improvement in its analytical characteristics. The elaborated microsensor showed fast responses towards catechol additions to tap water – a weakly supported medium – characterized by a linear range from 0.2 to 10 μM, a sensitivity of 1.35 ± 0.4 A M−1 cm−2 and a dynamic range up to 43 μM. This enhanced laccase-based microsensor was used for water quality monitoring and its performance for total phenol analysis of wastewater samples from different stages of the cleaning process was compared to a standard method.  相似文献   

2.
This work presents a simple, reproducible and low cost method, employing differential pulse anodic stripping voltammetry, for determination of selenium(IV). A gold electrode obtained from recordable compact disks (CD-R) was used to evaluate the voltammetric behavior of the metallic ion in 0.1 mol L−1 HClO4. To evaluate the voltammetric behavior of Se(IV), parameters such as deposition potential and deposition time were optimized. A wide linear response range, from 0.5 to 291 ng mL−1, was obtained using a 5.0 mm diameter gold electrode. Recovery tests for Se(IV) utilizing standard reference solutions provided values between 94 and 96%.  相似文献   

3.
A polyaniline (PANI)/carbon nanotubes (CNTs) composite modified electrode was fabricated by galvanostatic electropolymerization of aniline on multi-walled carbon nanotubes (MWNTs)-modified gold electrode. The electrode thus prepared exhibits enhanced electrocatalytic behavior to the reduction of nitrite and facilitates the detection of nitrite at an applied potential of 0.0 V. Although the amperometric responses toward nitrite at MWNTs/gold and PANI/gold electrodes have also been observed in the experiments, these responses are far less than that obtained at PANI/MWNTs/gold electrode. The effects of electropolymerization time, MWNTs concentration and pH value of the detection solution on the current response of the composite modified electrode toward sodium nitrite, were investigated and discussed. A linear range from 5.0 × 10−6 to 1.5 × 10−2 M for the detection of sodium nitrite has been observed at the PANI/MWNTs modified electrode with a sensitivity of 719.2 mA M−1 cm−2 and a detection limit of 1.0 μM based on a signal-to-noise ratio of 3.  相似文献   

4.
The simple, fast and highly sensitive anodic stripping voltammetric detection of As(III) at a gold (Au) nanoparticle‐modified glassy carbon (GC) (nano‐Au/GC) electrode in HCl solution was extensively studied. The Au nanoparticles were electrodeposited onto GC electrode using chronocoulometric technique via a potential step from 1.1 to 0 V vs. Ag|AgCl|NaCl (sat.) in 0.5 M H2SO4 containing Na[AuCl4] in the presence of KI, KBr, Na2S and cysteine additives. Surfaces of the resulting nano‐Au/GC electrodes were characterized with cyclic voltammetry. The performances of the nano‐Au/GC electrodes, which were prepared using different concentrations of Na[AuCl4] (0.05–0.5 mM) and KI additive (0.01–1.0 mM) at various deposition times (10–30 s), for the voltammetric detection of As(III) were examined. After the optimization, a high sensitivity of 0.32 mA cm?2 μM?1 and detection limit of 0.024 μM (1.8 ppb) were obtained using linear sweep voltammetry.  相似文献   

5.
《Electroanalysis》2017,29(10):2332-2339
A portable sensor based on a microband design for arsenic detection in drinking water is presented. The work was focused to minimize interference encountered with a standard screen‐printed electrodes featuring an onboard gold working electrode, carbon counter and silver−silver chloride pseudo‐reference electrodes as composite coatings on plastic surface. The interference effect was identified as chloride ions interacting with the silver surface of the reference electrode and formation of soluble silver chloride complexes such as AgCl43−. By modification of the reference electrodes with Nafion membrane (5 % in alcohols), the interference was entirely eliminated. However, membrane coverage and uniformity can impact the electrodes reproducibility and performance. Hence, the sensor design was further considered and a microband format was produced lending favorable diffusive to capacitive current characteristics. Using the microband electrodes allowed As(III) detection with limit of detection of 0.8 ppb (in 4 M HCl electrolyte), inherently avoiding the problems of electrode fouling and maximizing analyte signal in river water samples. This is below the World Health Organization limit of 10 μg L−1 (ppb). The electrolyte system was chosen so as to avoid problems from other common metal ions, most notably Cu(II). The presented electrode system is cost effective and offers a viable alternative to the colorimetric test kits presently employed for arsenic analysis in drinking water.  相似文献   

6.
We report a new nonenzymatic amperometric detection of ascorbic acid (AA) using a glassy carbon (GC) disk electrode modified with hollow gold/ruthenium (hAu–Ru) nanoshells, which exhibited decent sensing characteristics. The hAu–Ru nanoshells were prepared by the incorporation of Ru on hollow gold (hAu) nanoshells from Co nanoparticle templates, which enabled AA selectivity against glucose without aid of enzyme or membrane. The structure and electrocatalytic activities of the hAu–Ru catalysts were characterized by spectroscopic and electrochemical techniques. The hAu–Ru loaded on GC electrode (hAu–Ru/GC) showed sensitivity of 426 μA mM−1 cm−2 (normalized to the GC disk area) for the linear dynamic range of <5 μM to 2 mM AA at physiological pH. The response time and detection limit were 1.6 s and 2.2 μM, respectively. Furthermore, the hAu–Ru/GC electrode displayed remarkable selectivity for ascorbic acid over all potential biological interferents, including glucose, uric acid (UA), dopamine (DA), 4-acetamidophenol (AP), and nicotinamide adenine dinucleotide (NADH), which could be especially good for biological sensing.  相似文献   

7.
Monodispersed and highly stable gold nanoparticles with a diameter between 8 and 9 nm were synthesized in a weakly alkaline medium by chemical reduction of AuCl4 using 5-hydroxyl-1,4-naphthoquinone, and stabilized by the simultaneously formed poly(hydroxyl-1,4-naphthoquinone). The electrochemical properties of the resultant poly(hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles (AuNQ NPs) and its electrocatalytic activity for glucose oxidation in alkaline media were then investigated using a range of techniques, including dc cyclic, rotating disk electrode and Fourier transformed large amplitude ac voltammetry. The results demonstrate that these AuNQ NP modified electrodes exhibit excellent catalytic activity toward glucose oxidation in the potential region where the premonolayer oxidation process occurs. The overall catalytic glucose oxidation process was found to be mass transport controlled under the experimental conditions employed, allowing measurements to be conducted with a high reproducibility. The AuNQ NP modified electrodes showed a high sensitivity of 183 μA mM−1 cm−2 with a wide linear dynamic range of 0.5–50 mM and a detection limit of 61 μM. However, despite its excellent tolerance toward ascorbic acid, significant interference from uric acid was found with this AuNQ NP modified electrode.  相似文献   

8.
A new, simple, and fast method is described for determining selenium based on a silver wire electrode flow-through voltammetric detector. A comparison was done between the sensitivity of disk silver, mercury-modified glassy carbon, and mercury-modified gold electrodes. The response of the flow-through voltammetric detector was evaluated with respect to each electrode’s operating potential and pH in direct current mode. The limit of detection (3s) for Se(IV) was below 0.01 mg/L. The flow-through system does not need deposition times and the organic matter does not need to be removed before determining selenium in river water.  相似文献   

9.
This paper describes the use of a thin-layered dual-band electrochemical cell operating at flow conditions to determine dipyrone (sodium salt of 1-phenil-2,3-dimethyl-4-methylaminomethanesulfonate-5-pyrazolone) by reaction with electrogenerated iodine. The electrolytic cell consisted of two closely spaced gold electrodes, the upper stream electrode serving as the generator electrode and the downstream electrode working as the collector electrode. A linear dynamic range from 2 to 15 μmol l−1 dipyrone was obtained by using a sample volume of 100 μl, with a detection limit of 1.1 μmol l−1. Standard deviation (S.D.) of 3.4% for 20 repetitive injections of a 40 μmol l−1 dipyrone solution and sampling frequency of 90 h−1 were achieved. The results obtained with the thin-layered dual-band electrochemical cell for dipyrone determination in three different pharmaceutical samples compared well with those found by iodimetry with coulometrically generated iodine.  相似文献   

10.
Speciation analyses are of increasing interest in the environmental, toxicological and analytical fields, because the toxicity and reactivity of trace elements depend strongly on the chemical forms in which they are present. A simple electrodeposition–electrothermal atomic absorption spectrometry method for speciation analysis of some organic and inorganic selenium species in typical environmental water and agricultural soil samples has been developed. The method is based on the selective reduction of water-soluble Se(IV) and selenocystine (Se–Cys) species by an uncontrolled applied potential (1.8 V) on a mercury-coated electrode. In acidic media (1.0 M HCl solution) the only inorganic selenium species electrodeposited was Se(IV), and, of the water-soluble organic selenium species Se–Cys and Se–Met only Se–Cys was electrodeposited onto the mercury electrode surface. The proposed methodology was successfully applied to the speciation and determination of selenium in a few environmental samples. The spiked recovery value varied between 91% and 99%. The suggested method has been shown to have a characteristic mass (m0) of 25 pg, a limit of detection (LOD) of 1.0 μg L− 1 and a relative standard deviation (RSD%) of 3.5% for 6 measurements at a concentration of 100 μg L− 1 Se(VI).  相似文献   

11.
A feasible approach to construct multilayered enzyme film on the gold electrode surface for use as biosensing interface is described. The film was fabricated by alternate layer-by-layer deposition of periodate-oxidized glucose oxidase (GOx) and poly(allylamine) (PAA). The covalent attachment process was followed and confirmed by electrochemical impedance spectroscopy (EIS). X-ray diffraction (XRD) experiments revealed that the film was homogeneous and formed in an ordered manner with a thickness of 2.6 ± 0.1 nm per bilayer. The gold electrodes modified with the GOx/PAA multilayers showed excellent electrocatalytical response to the oxidation of glucose when ferrocenemethanol was used as an artificial redox mediator, which was studied by cyclic voltammetry (CV). From the analysis of voltammetric signals, the coverage of active enzyme on the electrode surface was estimated, which had a linear relationship with the number of GOx/PAA bilayers. This suggests that the analytical performance such as sensitivity, detection limit, and so on, is tunable by controlling the number of attached bilayers. The six GOx/PAA bilayer electrode exhibited a sensitivity of 15.1 μA mM−1 cm−2 with a detection limit of 3.8 × 10−6 M. In addition, the sensor exhibited good reproducibility and stability.  相似文献   

12.
The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni–Pd/core–shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni–Pd/core–shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM−1 cm−2), and a wide, useful linear range (0.1–500 μM). No interference from potential interfering species such as l-cysteine, ascorbic acid, and l-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages.  相似文献   

13.
The stripping voltammetry ofteIlurium(IV) in 0.1 M perchloric acid at gold electrodes is described. Detection limits for solid gold, in situ gold-plated and externally gold-plated rotating glassy carbon disk electrodes are presented. There is no significant increase in sensitivity for the use of solid gold electrodes; 0-25 ppm teIIurium(IV) can be determined by anodic stripping voltammetry at an in situ gold-plated rotating glassy carbon disk electrode. The determination of tellurium in NBS SRM 1632a (Trace Elements in Coal) is described.  相似文献   

14.
A chemically modified electrode consisting of Langmuir–Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (SDODAuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The SDODAuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10−6 mol L−1 were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences.  相似文献   

15.
Teresa Łuczak 《Electroanalysis》2009,21(13):1539-1549
Gold nanoparticles (Au‐NPs), cystamine (CA) and 3,3′‐dithiodipropionic acid (DTDPA) modified gold bare electrodes were applied in voltammetric sensors for simultaneous detection of norepinephrine (NEP), ascorbic (AA) and uric (UA) acids. A linear relationship between norepinephrine concentration and current response was obtained in the range of 0.1 μM to 600 μM M with the detection limit ≤0.091 μM for the electrodes modified at 2D template and in the range of 0.1 μM to 700 μM M with the detection limit ≤0.087 μM for the electrodes modified at 3D template The results have shown that using modified electrodes it is possible to perform electrochemical analysis of norepinephrine without interference of ascorbic and uric acids, whose presence is the major limitation in norepinephrine determination at a bare gold electrode. The modified SAMs electrodes show good selectivity, sensitivity, reproducibility and high stability.  相似文献   

16.
《Electroanalysis》2017,29(9):2083-2089
A facile and green electrochemical method for the fabrication of three‐dimensional porous nitrogen‐doped graphene (3DNG) modified electrode was reported. This method embraces two consecutive steps: First, 3D graphene/polypyrrole (ERGO/PPy) composite was prepared by electrochemical co‐deposition of graphene and polypyrrole on a gold foil. Subsequently, the ERGO/PPy composite modified gold electrode was annealed at high temperature. Thus 3DNG modified electrode was obtained. Scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to characterize the structure and morphology of the electrode. The electrode exhibits excellent electroanalytical performance for the reduction of hydrogen peroxide (H2O2). By linear sweep voltammetric measurement, the cathodic peak current was linearly proportional to H2O2 concentration in the range from 0.6 μM to 2.1 mM with a sensitivity of 1.0 μA μM−1 cm−2. The detection limit was ascertained to be 0.3 μM. The anti‐interference ability, reproducibility and stability of the electrode were carried out and the electrode was applied to the detection of H2O2 in serum sample with recoveries from 98.4 % to 103.2 %.  相似文献   

17.
The catalytic voltammetric protocol for the determination of titanium at a bismuth film electrode is presented. The method is based on the reduction of the Ti(IV)‐oxalate complex to Ti(III)‐oxalate in an acidic solution. It was proven that the addition of KClO3 causes rapid oxidation of Ti(III)‐oxalate and, subsequently, an increase of the reduction peak current of Ti(IV) at the bismuth film electrode. Parameters that influence the Ti response, including the film preparation, solution pH, oxalate acid and chlorate concentrations, were optimized. The exploitation of the bismuth film electrode under the optimized conditions yielded a stable response for titanium, with high sensitivity (12.5 μA μM?1), good precision (RSD=5.0%) and a low detection limit (1×10?8 M).  相似文献   

18.
Hemoglobin (Hb) and myoglobin (Mb) were immobilized at the didodecyldimethylammonium bromide (DDAB)-modified powder microelectrode (PME) to fabricate Hb-DDAB-PME and Mb-DDAB-PME. Direct electrochemistry of Hb and Mb were achieved on the DDAB-modified PME. The formal potential was −0.224 V for Hb and −0.212 V for Mb (vs. SCE). The apparent surface concentration of Hb and Mb at the electrode surface was 2.83 × 10−8 and 9.94 × 10−8 mol cm−2. The Hb-DDAB-PME and Mb-DDAB-PME were successfully applied for measurement of NO in vitro. The anodic current peaks for NO oxidation at +0.7 V and the cathodic current peaks for NO reduction at −0.85 V on the CV curves were obtained on the modified electrodes. For detection of NO at +0.7 V, the sensitivity is 3.31 mA μM−1 cm−2 for Hb-DDAB-PME and 0.6 mA μM−1 cm−2 for Mb-DDAB-PME. The detection limit is 5 nM for Hb-DDAB-PME and 9 nM for Mb-DDAB-PME. The linear response range is 9-100 and 28-330 nM for Hb- and Mb-modified PME, respectively. For the electrochemical detection of NO at −0.85 V by using Hb-DDAB-PME, the detection sensitivity is 39.56 μA μM−1 cm−2; the detection limit is as low as 0.2 μM; and the linear response range is 1.90-28.08 μM.  相似文献   

19.
A ceramic composite electrode for the determination of selenium(IV) was manufactured using solgel and screen-printing technologies. This electrode exhibits a higher sensitivity and selectivity in comparison with the other studied carbon-containing electrodes. The effect of the type and amount of graphite powder, modifier, catalyst, and pore-forming agent on the properties of the ceramic composite electrode was investigated. It was found that an increase in the pore size in the electrode reduced the selectivity of selenium(IV) determination. The calibration plot was linear over the range 0.1–20 μg/L at an accumulation time of 10 s. The relative standard deviation for the determination of 1.0 and 0.05 μg/L of selenium(IV) (n = 5) was 3% and 8%, respectively. The detection limit of selenium(IV) was 0.02 μg/L at an accumulation time of 90 s. The results of selenium(IV) determination in natural and mineral waters are presented.  相似文献   

20.
Stanca SE  Popescu IC  Oniciu L 《Talanta》2003,61(4):501-507
Two different approaches, both exploiting two enzymes cooperative functioning, to enhance the sensitivity of tyrosinase (PPO) based biosensor for amperometric detection of phenols have been compared. For this purpose, one monoenzyme electrode (PPO) and two bienzyme electrodes (PPO and d-glucose dehydrogenase, GDH; PPO and horseradish peroxidase, HRP) were constructed using agar-agar gel as enzyme immobilization matrix. The biosensors responses for l-tyrosine detection were recorded at −50 mV versus saturated calomel electrode (SCE). The highest sensitivity (74 mA M−1) was observed for the PPO-GDH couple, while that recorded for PPO-HRP couple system was only 32 times higher than that measured for monoenzyme electrode (0.01 mA M−1). The ability of the PPO-, PPO-GDH-, PPO-HRP-based biosensors to assay phenols was demonstrated by quantitative determination of phenol, 1,2-dihydroxybenzene, 1,3-dihydroxybenzene, 1,4-dihydroxybenzene, 2-amino-3 (4-hydroxyphenyl) propanoic acid, 2-hydroxytoluene, 3-hydroxytoluene, 4-hydroxytoluene, 4-clorophenol, 3-clorophenol, 2-clorophenol, 4-hydroxybenzoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号