首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organically modified silica substrate containing amine and vinyl functional groups were used for reduction and stabilization of palladium nanoparticles. Uniform spherical nanoparticles of palladium with average diameter of 10 nm were formed on silica substrate by direct contact of the substrate with an aqueous solution of palladium precursor, without the addition of any chemical reducer. Moreover, a sensitive and selective solid state electrochemiluminescence sensor was fabricated for the determination of imipramine, based on Ru(bpy)32+-palladium nanoparticles doped carbon ionic liquid electrode. In this process, imipramine acts as a co-reactant for Ru(bpy)32+. It is believed that the enhancement of the electrochemiluminescence signal in the presence of palladium nanoparticles in the composite is due to palladium catalytic effect on electrochemical and also chemical process involved in formation of Ru(byp)32+*. In addition, the results confirmed that, the rigid composite electrode shows the characteristic of microelectrode arrays. The proposed method was applied to the determination of imipramine in tablets and urine samples. The electrochemiluminescence intensity showed good linearity with the imipramine concentration from 1–100 pM, with a detection limit of 0.1 pM.  相似文献   

2.
Net analyte signal (NAS)-based method called HLA/GO was applied for the selectively determination of binary mixture of ethanol and water by quartz crystal nanobalance (QCN) sensor. A full factorial design was applied for the formation of calibration and prediction sets in the concentration ranges 5.5-22.2 μg mL−1 for ethanol and 7.01-28.07 μg mL−1 for water. An optimal time range was selected by procedure which was based on the calculation of the net analyte signal regression plot in any considered time window for each test sample. A moving window strategy was used for searching the region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of PRESS value. On the base of obtained results, the differences on the adsorption profiles in the time range between 1 and 600 s were used to determine mixtures of both compounds by HLA/GO method. The calculation of the net analytical signal using HLA/GO method allows determination of several figures of merit like selectivity, sensitivity, analytical sensitivity and limit of detection, for each component. To check the ability of the proposed method in the selection of linear regions of adsorption profile, a test for detecting non-linear regions of adsorption profile data in the presence of methanol was also described. The results showed that the method was successfully applied for the determination of ethanol and water.  相似文献   

3.
Using HG – AFS as a powerful tool to study valence transformations of Te, we found that, in presence of HCl and at high temperature, Te can form volatile species and be lost during sample digestion and pre-reduction steps. It was also noticed that the chemical valences of Te can be modified under different chemical and digestion conditions and even by samples themselves with certain matrices. KBr can reduce Te(VI) to Te(IV) in 3.0 M HCl at 100 °C, but when HNO3 was >5% (v/v) in solution, Br2 was formed and caused serious interference to Te measurements. HCl alone can also pre-reduce Te(VI) to Te(IV), only when its concentration was ≥6.0 M (100 °C for 15min). Among 10 studied chemical elements, only Cu2+ caused severe interference. Thiourea is an effective masking agent only when Cu2+ concentration is equal or lower than 10 mg/L. Chemical reagents, chemical composition of sample, as well as the modes of digestion can greatly affect Te valences, reagent blanks and analytical precisions. A protocol of 2–step–digestion followed by an elimination of HF is proposed to minimize reagent blank and increase the signal/noise ratios. It is important to perform a preliminary test to confirm whether a pre-reduction step is necessary; this is especially true for samples with complex matrices such as those with high sulfide content. The analytical detection limits of this method in a pure solution and a solid sample were 100 ng/L and 0.10 ± 0.02 μg/g, respectively.  相似文献   

4.
We have combined short-column ion chromatographic separation and on-line photocatalyst-assisted vapor generation (VG) techniques with inductively coupled plasma mass spectrometry to develop a simple and sensitive hyphenated method for the determination of aqueous Hg2+ and MeHg+ species. The separation of Hg2+ and MeHg+ was accomplished on a cation-exchange guard column using a glutathione (GSH)-containing eluent. To achieve optimal chromatographic separation and signal intensities, we investigated the influence of several of the operating parameters of the chromatographic and photocatalyst-assisted VG systems. Under the optimized conditions of VG process, the shortcomings of conventional SnCl2-based VG techniques for the vaporization of MeHg+ was overcome; comparing to the concentric nebulizer-ICP-MS system, the analytical sensitivity of ICP-MS toward the detection of Hg2+ and MeHg+ were also improved to 25- and 7-fold, respectively. With the use of our established HPLC–UV/nano-TiO2–ICP-MS system, the precision for each analyte, based on three replicate injections of 2 ng/mL samples of each species, was better than 15% RSD. This hyphenated method also provided excellent detection limits—0.1 and 0.03 ng/mL for Hg2+ and MeHg+, respectively. A series of validation experiments—analysis of the NIST 2672a Standard Urine Reference Material and other urine samples—confirmed further that our proposed method could be applied satisfactorily to the determination of inorganic Hg2+ and MeHg+ species in real samples.  相似文献   

5.
In the present article we report our results on the development of a selective automated method for the determination of histamine in seafood using the concept of zone fluidics. The method is based on the sequential on-line reaction of the analyte with o-phthalaldehyde in the absence of a nucleophilic reagent, followed by acidification. The careful selection of the chemical and instrumental variables enabled the determination of the analyte with adequate sensitivity at the low micromolar level and with specificity against other biogenic amines and amino acids such as histidine. The LOD was 0.05 μmol L−1 (0.6 mg kg−1) and linearity was obeyed in the range of 0.5–15 μmol L−1 (5.5–170 mg kg−1). The proposed method offers a satisfactory sampling rate of 15 h−1 and adequate accuracy and precision for the analysis of seafood products after minimum sample preparation and without employing a separation technique.  相似文献   

6.
The review discusses the pitfalls of the matrix effect in mass spectrometry detection hyphenated to liquid chromatography separation. Matrix effect heavily influences both qualitative and quantitative analyses, giving rise to suppression or enhancement of the signal. As generally recognised, the predominant cause is the presence of undesired components that co-elute in the chromatographic separation and alter the ionisation process. The interfering species can be components of the sample, compounds released during the pre-treatment/extraction process or reagents added to the mobile phase to improve chromatographic resolution. The different mechanisms proposed in literature to explain the suppression or the enhancement of the signal both in electrospray and atmospheric pressure chemical ionisations are presented and the results observed in the different experimental conditions are compared and discussed. All data together lead to conclude that the chemical properties of the target analyte, the kind of matrix, the matrix to analyte concentration ratio, the extraction process, the chromatographic conditions as well as the kind of the mass spectrometry instrumentation and the ionisation conditions can play a role. Likely all these potential causes act in a synergic way and the final effect observed is hardly due to only one of them. Depending on an unpredictable combination of conditions, signal suppression or enhancement can be observed. The review discusses the matrix effects observed in HPLC–MS and HPLC–MS/MS analysis proposes hypotheses to explain the observed behaviours and proposes methods and strategies to overcome the matrix effects.  相似文献   

7.
It is critical to develop a cost-effective quantitative/semiquantitative assay for rapid diagnosis and on-site detection of toxic or harmful substances. Here, a naked-eye based semiquantitative immunochromatographic strip (NSI-strip) was developed, on which three test lines (TLs, TL-I, TL-II and TL-III) were dispensed on a nitrocellulose membrane to form the test zone. Similar as the traditional strip assay for small molecule, the NSI-strip assay was also based on the competitive theory, difference was that the analyte competed three times with the capture reagent for the limited number of antibody binding sites. After the assay, the number of TLs developed in the test zone was inversely proportional to the analyte concentration, thus analyte content levels could be determined by observing the appeared number of TLs. Taking aflatoxin B1 as the model analyte, visual detection limit of the NSI-strip was 0.06 ng mL−1 and threshold concentrations for TL-I–III were 0.125, 0.5, and 2.0 ng mL−1, respectively. Therefore, according to the appeared number of TLs, the following concentration ranges would be detectable by visual examination: 0–0.06 ng mL−1 (negative samples), and 0.06–0.125 ng mL−1, 0.125–0.5 ng mL−1, 0.5–2.0 ng mL−1 and >2.0 ng mL−1 (positive samples). That was to say, compared to traditional strips the NSI-strip could offer more parameter information of the target analyte content. In this way, the NSI-strip improved the qualitative presence/absence detection of traditional strips by measuring the content (range) of target analytes semiquantitatively.  相似文献   

8.
Engineered nucleic acid probes containing recognition and signaling functions find growing interest in biosensor design. In this paper, we developed a novel electrochemical biosensor for sensitive and selective detecting of Hg2+ based on a bifunctional oligonucleotide signal probe combining a mercury-specific sequence and a G-quadruplex (G4) sequence. For constructing the electrochemical Hg2+ biosensor, a thiolated, mercury-specific oligonucleotide capture probe was first immobilized on gold electrode surface. In the presence of Hg2+, a bifunctional oligonucleotide signal probe was hybridized with the immobilized capture probe through thymine–mercury(II)–thymine interaction-mediated surface hybridization. The further interaction between G4 sequence of the signal probe and hemin generated a G4–hemin complex, which catalyzed the electrochemical reduction of hydrogen peroxide, producing amplified readout signals for Hg2+ interaction events. This electrochemical Hg2+ biosensor was highly sensitive and selective to Hg2+ in the concentration of 1.0 nM to 1 μM with a detection limit of 0.5 nM. The new design of bifunctional oligonucleotide signal probes also provides a potential alternative for developing simple and effective electrochemical biosensors capable of detecting other metal ions specific to natural or artificial bases.  相似文献   

9.
A novel net analyte signal standard addition method (NASSAM) was used for simultaneous determination of the drugs anthazoline and naphazoline. The NASSAM can be applied for determination of analytes in the presence of known interferents. The proposed method is used to eliminate the calibration and prediction steps of multivariate calibration methods; the determination is carried out in a single step for each analyte. The accuracy of the predictions against the H-point standard addition method is independent of the shape of the analyte and interferent spectra. The net analyte signal concept was also used to calculate multivariate analytical figures of merit, such as LOD, selectivity, and sensitivity. The method was successfully applied to the simultaneous determination of anthazoline and naphazoline in a commercial eye drop sample.  相似文献   

10.
The partial least squares (PLS) applied to the simultaneous determination of the divalent ions of copper, nickel, cobalt and zinc based on the formation of their complexes with 2-carboxy-2′-hydroxy-5′-sulfoformazyl benzene (zincon). The absorption spectra were recorded from 515 through 750 nm. The effect of pH on sensitivity and the selectivity was studied in the range 3.0-10.0 and the pH 8.0 was choused according to net analyte signal (NAS) as a function of pH. The concentration range for Cu2+, Ni2+, Co2+and Zn2+ in solution calibration sets were 0-2.6, 0-4.6, 0-3.0 and 0-4.92 ppm, respectively. The root mean squares differences (RMSD) for copper, nickel, cobalt and zinc were 0.0181, 0.0488, 0.0309 and 0.0463, respectively.  相似文献   

11.
Differential pulse polarography was used for simultaneous determination of Sn2+ and Pb2+. But there is a problem for simultaneous determination and it is high overlapped DPPs of mentioned cations that their determination is impossible in the presence of each other, so multivariate calibration methods as chemomatrics methods were used for this determination. There are some disadvantageous for multivariate calibration methods that can be solved by a new and simple method called net analyte signal standard addition method. This method has some advantages, such as: the use of a full voltammogram, realization in a single step, therefore it does not require calibration and prediction steps and only a few measurements are required for the determination.  相似文献   

12.
In this work a new modification of the standard addition method called “net analyte signal standard addition method (NASSAM)” is presented for the simultaneous spectrofluorimetric and spectrophotometric analysis. The proposed method combines the advantages of standard addition method with those of net analyte signal concept. The method can be applied for the determination of analyte in the presence of known interferents. The accuracy of the predictions against H-point standard addition method is not dependent on the shape of the analyte and interferent spectra. The method was successfully applied to simultaneous spectrofluorimetric and spectrophotometric determination of pyridoxine (PY) and melatonin (MT) in synthetic mixtures and in a pharmaceutical formulation.  相似文献   

13.
Rapid and ultrasensitive detection of trace heavy metal mercury(II) ions (Hg2+) are of significant importance due to the induced serious risks for environment and human health. This presented article reports the gold nanoparticle-based dual labeling colorimetric method (Dual-COLO) for ultrasensitive and rapid detection of Hg2+ using the specific thymine–Hg2+–thymine (T–Hg2+–T) as recognition system and the dual labeling strategy for signal amplification. Both qualitative and quantitative detections of Hg2+ are achieved successfully in aqueous samples. More importantly, the achieved detection limit of 0.005 ng mL−1 (0.025 nM) without any instruments is very competitive to other rapid detection methods even ICP-MS based methods. This Dual-COLO method is also applied directly for real water sample monitoring and, more importantly, applied in analysis of mercury poisoned animal tissues and body fluidic samples, indicating a potentially powerful and promising tool for environmental monitoring and food safety control.  相似文献   

14.
Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg2+), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg2+ by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg2+ ion was intercalated into the DNA polyion complex membrane based on T–Hg2+–T coordination chemistry. The chelated Hg2+ ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)63+ for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg2+ level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg2+. The strategy afforded exquisite selectivity for Hg2+ against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg2+ in spiked tap-water samples, and the recovery was 87.9–113.8%.  相似文献   

15.
In this paper, the influence of chemical variables on the mass transfer kinetics of ionic species under dynamic conditions in flow-through sandwich-type dialysers is thoroughly investigated. Although the driving force of the mass transport is the existence of a concentration gradient between the two phases separated by a semi-permeable membrane, it has been demonstrated that the chemical composition of both donor and acceptor solutions in terms of concentration and kind of ionic compounds has a significant influence on the mass transfer efficiency. The Donnan effect on passive dialysis and the fast migration of ions concomitantly present with the target species improved the transfer of the analyte ion in the membrane separation process. Thus, for the determination of low molecular weight anions, the addition of cationic species with high transport index, such as oxonium ion, to the donor stream, or multicharged ions (e.g. Al3+) to the recipient stream, enhanced the dialysis yields more than 62% with respect to the use of water as acceptor and sample medium.As a consequence of the dependence of the dialysis rate on the composition of the sample matrix, different diffusate concentrations were encountered for the same input concentration of analyte when prepared in different electrolytic media. In order to balance the chemical potential on the donor side, the ionic strength for both standards and sample solutions should be carefully adjusted via incorporation of a modifier stream in the flow manifold (e.g. 1.0 mol l−1 KNO3 or 0.5 mol l−1 H2SO4) as demonstrated in the bulk of the text. Appropriate buffering of the recipient solution was equally effective. Furthermore, these strategies were found suitable to overcome the lack of linearity observed by several researchers in in-line dialytic processes at low concentrations of ionic species caused by polar interactions with the membrane surface.Chloride was selected as a model of target species for assessing the effect of chemical variables on the mass transfer rate in flow-through parallel-plate dialyser units. The spectrophotometric detection scheme for chloride, implemented in a secondary flow configuration, is based on the displacement reaction of thiocyanate from the corresponding mercury salt in the presence of iron(III).  相似文献   

16.
The present work demonstrates a novel signal-off electrochemical method for the determination of DNA methylation and the assay of methyltransferase activity using the electroactive complex [Ru(NH3)6]3+ (RuHex) as a signal transducer. The assay exploits the electrostatic interactions between RuHex and DNA strands. Thiolated single strand DNA1 was firstly self-assembled on a gold electrode via Au–S bonding, followed by hybridization with single strand DNA2 to form double strand DNA containing specific recognition sequence of DNA adenine methylation MTase and methylation-responsive restriction endonuclease Dpn I. The double strand DNA may adsorb lots of electrochemical species ([Ru(NH3)6]3+) via the electrostatic interaction, thus resulting in a high electrochemical signal. In the presence of DNA adenine methylation methyltransferase and S-adenosyl-l-methionine, the formed double strand DNA was methylated by DNA adenine methylation methyltransferase, then the double strand DNA can be cleaved by methylation-responsive restriction endonuclease Dpn I, leading to the dissociation of a large amount of signaling probes from the electrode. As a result, the adsorption amount of RuHex reduced, resulting in a decrease in electrochemical signal. Thus, a sensitive electrochemical method for detection of DNA methylation is proposed. The proposed method yielded a linear response to concentration of Dam MTase ranging from 0.25 to 10 U mL−1 with a detection limit of 0.18 U mL−1 (S/N = 3), which might promise this method as a good candidate for monitoring DNA methylation in the future.  相似文献   

17.
An analytical method for the determination of tiopronin in pharmaceuticals was developed. The method is based on measurements of the chemiluminescence (CL) produced by tiopronin upon reaction with sulfuric acid and potassium permanganate as the oxidant in the presence of formaldehyde as emission enhancer. This allows entire chemiluminescence intensity vs. time profiles to be recorded by using the stopped-flow technique in a continuous-flow system, which, in turn, enables the use of a new parameter (the rate of the light decay reaction) in addition to the maximum emission intensity and total emission area, which are proportional to the analyte concentration. The influence of chemical variables such as the type of acid used and its concentration, emission enhancer, and oxidant concentration on the chemiluminescence signal was examined. The calibration graph was linear from 0.05 to 3.00 mg L?1. The limit of detection as determined according to Clayton ranged from 0.12 to 0.17 mg L?1 and the relative standard deviation (RSD) for the analysis of 10 samples containing an analyte concentration of 1.50 mg L?1 was 1.87%.  相似文献   

18.
In this work, it was developed a method for the determination of nitrite and nitrate in groundwater by high-resolution continuum source electrothermal molecular absorption spectrometry of NO produced by thermal decomposition of nitrate in a graphite furnace. The NO line at 215.360 nm was used for all analytical measurements and the signal obtained by integrated absorbance of three pixels. A volume of 20 μL of standard solution or groundwater sample was injected into graphite furnace and 5 μL of a 1% (m/v) Ca solution was co-injected as chemical modifier. The pyrolisis and vaporization temperatures established were of 150 and 1300 °C, respectively. Under these conditions, it was observed a difference of thermal stability among the two nitrogen species in the presence of hydrochloric acid co-injected. While that the nitrite signal was totally suppressed, nitrate signal remained nearly stable. This way, nitrogen can be quantified only as nitrate. The addition of hydrogen peroxide provided the oxidation of nitrite to nitrate, which allowed the total quantification of the species and nitrite obtained by difference. A volume of 5 μL of 0.3% (v/v) hydrochloric acid was co-injected for the elimination of nitrite, whereas that hydrogen peroxide in the concentration of 0.75% (v/v) was added to samples or standards for the oxidation of nitrite to nitrate. Analytical curve was established using standard solution of nitrate. The method described has limits of detection and quantification of 0.10 and 0.33 μg mL−1 of nitrogen, respectively. The precision, estimated as relative standard deviation (RSD), was of 7.5 and 3.8% (n = 10) for groundwater samples containing nitrate–N concentrations of 1.9 and 15.2 μg mL−1, respectively. The proposed method was applied to the analysis of 10 groundwater samples and the results were compared with those obtained by ion chromatography method. In all samples analyzed, the concentration of nitrite–N was always below of the limit of quantification of both the methods. The concentrations of nitrate–N varied from 0.58 to 15.5 μg mL−1. No significant difference it was observed between the results obtained by both methods for nitrate–N, at the 95% confidence level.  相似文献   

19.
In the present work, the multi-channel features of multisyringe flow injection analysis (MSFIA) were exploited for the first time to implement calibration based on standard addition method (SAM). For this, standard solutions containing different concentrations of target analyte were placed in each syringe of the multisyringe and connected to a flow network where in-line mixing of sample and standard through a merging zone approach was established prior to detection of analyte. Using this strategy, artifacts reported before in SAM using flow injection analysis were avoided as the concentration of the analyte in the resulting mixture was related to the dilution of sample and added standard within the system, and the concentration of all matrix components was kept constant during all measurements. The feasibility of the proposed MSFIA system was assessed through application to potentiometric determination of chloride ion in electroplating bath and milk samples. Results obtained for samples (n = 15) were not statistically different from those provided by titrimetric procedures, with an excellent throughput (20–31 samples h− 1), comprising four-level addition of chloride ion.  相似文献   

20.
A general method of performing non-competitive immunoassays for a low-molecular-mass analyte was developed and applied to cortisol determination in saliva samples. The method is based on the use of a “blocking reagent”, which is able to bind to antibody sites not occupied by the analyte, and in a stronger way than the analyte itself. When an enzyme-labelled analyte is added it substitutes the analyte in the antibody complex, but not the blocking reagent. The measured signal is linearly correlated to the concentration of the complex and, consequently, to the analyte concentration. The 3σ limit of detection (LOD, 0.2 nmol l−1) obtained by the above method was 10 times lower than that obtained by the corresponding ELISA. As non-competitive immunoassays reported for small molecules up to now have been no more than just approaches, the suitability of the proposed assay for cortisol quantification in a real matrix was investigated. Human saliva was chosen as a matrix because of the need for very sensitive techniques to determine salivary cortisol content. The matrix effect was offset by performing the calibration experiments in acidic conditions (pH=5.6) and adding 0.1% of bovine serum albumin (BSA) to the buffer. In these conditions, the LOD was 1.4 nmol l−1, which was adequate to measure normal levels of cortisol. Spiked samples were analysed and gave recoveries ranging from about 80 to 120%. Therefore, five subject samples, collected over 18 h showed salivary cortisol concentrations compatible with the circadian variation of reported normal values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号