首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
An in-syringe demulsified dispersive liquid–liquid microextraction (ISD–DLLME) technique was developed using low-density extraction solvents for the highly sensitive determination of the three trace fungicides (azoxystrobin, diethofencarb and pyrimethanil) in water samples by high performance liquid chromatography–mass spectrometry chromatography–diode array detector/electrospray ionisation mass spectrometry. In the proposed technique, a 5-mL syringe was used as an extraction, separation and preconcentration container. The emulsion was obtained after the mixture of toluene (extraction solvent) and methanol (dispersive solvent) was injected into the aqueous bulk of the syringe. The obtained emulsion cleared into two phases without centrifugation, when an aliquot of methanol was introduced as a demulsifier. The separated floating organic extraction solvent was impelled and collected into a pipette tip fitted to the tip of the syringe. Under the optimal conditions, the enrichment factors for azoxystrobin, diethofencarb and pyrimethanil were 239, 200, 195, respectively. The limits of detection, calculated as three times the signal-to-noise ratio (S N−1), were 0.026 μg L−1 for azoxystrobin, 0.071 μg L−1 for diethofencarb and 0.040 μg L−1 for pyrimethanil. The repeatability study was carried out by extracting the spiked water samples at concentration levels of 0.02 μg mL−1 for all the three fungicides. The relative standard deviations varied between 4.9 and 8.2% (n = 5). The recoveries of all the three fungicides from tap, lake and rain water samples at spiking levels of 0.2, 1, 5 μg L−1 were in the range of 90.0–105.0%, 86.0–114.0% and 88.6–110.0%, respectively. The proposed ISD–DLLME technique was demonstrated to be simple, practical and efficient for the determination of different kinds of fungicide residues in real water samples.  相似文献   

2.
A dispersive liquid-liquid microextraction method was developed for the determination of fungicides (diethofencarb and pyrimethanil) in aqueous samples. It is based on the use of solidified floating organic drops combined with high-performance liquid chromatography. Extraction solvent and dispersive solvent, extraction time and salt effect were optimized. Under optimized conditions, the enrichment factors for a 5?mL water sample are between 145 and 161. The limits of detection for diethofencarb and pyrimethanil are 0.24 and 0.09???g ? L?1, respectively. The method offers good repeatability and high recovery. Compared with dispersive liquid-liquid microextraction, it has a higher enrichment factor, high precision due to the ease with which the solidified floating phase is transferred, thus avoiding the loss of analyte. Toxic solvents were replaced by 1-dodecanol with its much lower toxicity. The method has been successfully applied to the determination of the two fungicides in tap water, lake water, and river water.  相似文献   

3.
In this work, a simple, rapid and sensitive sample pretreatment technique, dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD), has been developed to determine carbamate (carbaryl) and organophosphorus (triazophos) pesticide residues in water and fruit juice samples. Parameters, affecting the DLLME performance such as the kind and volume of extraction and dispersive solvents, extraction time and salt concentration, were studied and optimized. Under the optimum extraction conditions (extraction solvent: tetrachloroethane, 15.0 μL; dispersive solvent: acetonitrile, 1.0 mL; no addition of salt and extraction time below 5 s), the performance of the proposed method was evaluated. The enrichment factors for the carbaryl and triazophos were 87.3 and 275.6, respectively. The linearity was obtained in the concentration range of 0.1-1000 ng mL−1 with correlation coefficients from 0.9991 to 0.9999. The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, ranged from 12.3 to 16.0 pg mL−1. The relative standard deviations (RSDs, for 10 ng mL−1 of carbaryl and 20 ng mL−1 of triazophos) varied from 1.38% to 2.74% (n = 6). The environmental water (at the fortified level of 1.0 ng mL−1) and fruit juice samples (at the fortified level of 1.0 and 5.0 ng mL−1) were successfully analyzed by the proposed method, and the relative recoveries of them were in the range of 80.4-114.2%, 89.8-117.9% and 86.3-105.3%, respectively.  相似文献   

4.
A novel air assisted liquid–liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid–liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μg L−1. The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3–13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly.  相似文献   

5.
A novel approach for preconcentration and speciation analysis of trace amount of mercury from water samples was proposed by dispersive liquid–liquid microextraction (DLLME) coupled to high performance liquid chromatography with diode array detection (HPLC-DAD). Mercury species (Hg2+, methylmercury (MeHg+) and phenylmercury (PhHg+)) were complexed with dithizone (DZ) to form hydrophobic chelates and then extracted into the fine drops of extraction solvent dispersed in the aqueous sample by dispersive solvent. After extraction, the sedimented phase was analyzed by HPLC-DAD. Some important parameters affecting the DLLME such as extraction solvent and dispersive solvent type and volume, concentration of dithizone solution, sample pH, extraction time and salt effect were investigated. Ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]) was found to be a suitable extractant for the chelates. Under the optimized conditions (extraction solvent: 70 μL of ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]); dispersive solvent: 0.75 mL of methanol containing dithizone (0.02%, m/v); pH: 4; extraction time: 5 min; and without salt addition), the limits of detection for Hg2+, MeHg+ and PhHg+ were 0.32, 0.96 and 1.91 μg L−1 (S N−1 = 3) respectively, and the relative standard deviation (RSD) was between 4.1 and 7.3% (n = 5). Three real water samples (tap water, river water and lake water) spiked with mercury species were detected by the developed method, and the relative recoveries obtained for Hg2+, MeHg+ and PhHg+ were 89.6–101.3%, 85.6–102.0% and 81.3–97.6%, respectively.  相似文献   

6.
The paper described a new ionic liquid, 1,3-dibutylimidazolium hexafluorophosphate, as extraction solvent for extraction and preconcentration of organophosphorus pesticides (fenitrothion, parathion, fenthion and phoxim) from water and fruit samples by dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. The effects of experimental parameters, such as extraction solvent volume, disperser solvent and its volume, extraction and centrifugal time, sample pH, extraction temperature and salt addition, on the extraction efficiency were investigated. An extraction recovery of over 75% and enrichment factor of over 300-fold were obtained under the optimum conditions. The linearity relationship was also observed in the range of 5–1000 μg L−1 with the correlation coefficients (r2) ranging from 0.9988 to 0.9999. Limits of detection were 0.01–0.05 μg L−1 for four analytes. The relative standard deviations at spiking three different concentration levels of 20, 100 and 500 μg L−1 varied from 1.3–2.7, 1.4–1.9 and 1.1–1.7% (n = 7), respectively. Three real samples including tap water, Yellow River water and pear spiked at three concentration levels were analyzed and yielded recoveries ranging from 92.7–109.1, 95.0–108.2 and 91.2–108.1%, respectively.  相似文献   

7.
A novel ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) coupled with high performance liquid chromatography-diode array detection has been developed for the extraction and determination of six carbamate pesticides (metolcarb, carbofuran, carbaryl, pirimicarb, isoprocarb and diethofencarb) in water samples. In the UASEME technique, Tween 20 was used as emulsifier, and chlorobenzene and chloroform were used as dual extraction solvent without using any organic dispersive solvent that is normally required in the previously described common dispersive liquid–liquid microextraction method. Parameters that affect the extraction efficiency, such as the kind and volume of the extraction solvent, the type and concentration of the surfactant, ultrasound emulsification time and salt addition, were investigated and optimized for the method. Under the optimum conditions, the enrichment factors were in the range between 170 and 246. The limits of detection of the method were 0.1–0.3 ng mL−1 and the limits of quantification were between 0.3 and 0.9 ng mL−1, depending on the compounds. The linearity of the method was obtained in the range of 0.3–200 ng mL−1 for metolcarb, carbaryl, pirimicarb, and diethofencarb, 0.6–200 ng mL−1 for carbofuran, and 0.9–200 ng mL−1 for isoprocarb, with the correlation coefficients (r) ranging from 0.9982 to 0.9998. The relative standard deviations varied from 3.2 to 4.8% (n = 5). The recoveries of the method for the six carbamates from water samples at spiking levels of 1.0, 10.0, 50.0 and 100.0 ng mL−1 were ranged from 81.0 to 97.5%. The proposed UASEME technique has demonstrated to be simple, practical and environmentally friendly for the determination of carbamates residues in river, reservoir and well water samples.  相似文献   

8.
Dichlorodiphenyltrichloroethane,1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its main metabolites have been paid much more attention, and present paper describes a new process for the rapid determination of such pollutants in environmental water samples based on dispersive liquid–liquid microextraction (DLLME) and high performance liquid chromatography with ultraviolet detector, which has merits such as high enrichment factor and sensitivity, low cost and easy to operate. Significant parameters such as extraction solvent and dispersive solvent type and volume, pH, extraction time and centrifuging time, which would have important impact on the enrichment of target pollutants, have been investigated in detail. The results exhibited that excellent performance could be achieved with carbon tetrachloride and acetonitrile as the extraction solvent and dispersive solvent, respectively. Under the optimal conditions, excellent linear relationship was gained in the range of 1.0–50 μg L−1, and detection limits were in the range of 0.32–0.51 μg L−1. The precisions of the proposed method were in the range of 2.80–7.50% (RSD). The proposed method was validated with real water samples, and the results indicated the spiked recoveries were in the range of 85.58–119.6% and the established method was very good and competitive in the determination of DDT and its metabolites.  相似文献   

9.
A method for analysis of diethofencarb and pyrimethanil in apple pulp and peel was developed by using dispersive liquid–liquid microextraction based on solidification of a floating organic droplet (DLLME-SFO) and high-performance liquid chromatography with diode-array detection (HPLC–DAD). Acetonitrile was used as the solvent to extract the two fungicides from apple pulp and peel, assisted by microwave irradiation. When the extraction process was finished, the target analytes in the extraction solvent were rapidly transferred from the acetonitrile extract to another extraction solvent (1-undecanol) by using DLLME-SFO. Because of the lower density of 1-undecanol than that of water, the finely dispersed droplets of 1-undecanol collected on the top of aqueous sample and solidified at low temperature. Meanwhile, the tiny particles of apple cooled and precipitated. Recovery was tested for a concentration of 8 μg kg−1. Recovery of diethofencarb and pyrimethanil from apple pulp and peel was in the range 83.5–101.3%. The repeatability of the method, expressed as relative standard deviation, varied between 4.8 and 8.3% (n = 6). Detection limits of the method for apple pulp and peel varied from 1.2–1.6 μg kg−1 for the two fungicides. Compared with conventional sample preparation, the method has the advantage of rapid speed and simple operation, and has high enrichment factors and low consumption of organic solvent.  相似文献   

10.
A simple and sensitive method based on dispersive liquid‐liquid microextraction (DLLME) in conjunction with high performance liquid chromatography‐diode array detection (HPLC‐DAD) has been developed for the quantitative analysis of patulin in apple juice and concentrate samples. The effect of extraction and disperser solvent (nature and volume), pH of sample solution, extraction time and extraction temperature was investigated. Under the optimal conditions the linear dynamic range of patulin was from 8.0 to 40.0 μg L‐1 with a correlation coefficient of 0.9993 and a detection limit of 4.0 μg L‐1. The relative standard deviation (RSD) was less than 5.9% (n = 5) and the recovery values were in the range of 94‐97%. Finally the proposed method was successfully applied for the analysis of patulin in apple juice and concentrate samples.  相似文献   

11.
A syringe to syringe dispersive liquid phase microextraction-solidified floating organic drop was introduced and used for the simultaneous extraction of trace amounts of albendazole and triclabendazole from different matrices. The extracted analytes were determined by high performance liquid chromatography along with fluorescence detection. The analytical parameters affecting the microextraction efficiency including the nature and volume of the extraction solvent, sample volume, sample pH, ionic strength and the cycles of extraction were optimized. The calibration curves were linear in the range of 0.1–30.0 μg L−1 and 0.2–30.0 μg L−1 with determination coefficients of 0.9999 and 0.9998 for albendazole and triclabendazole respectively. The detection limits defined as three folds of the signal to noise ratio were found to be 0.02 μg L−1 for albendazole and 0.06 μg L−1 for triclabendazole. The inter-day and intra-day precision (RSD%) for both analytes at three concentration levels (0.5, 2.0 and 10.0 μg L−1) were in the range of 6.3–10.1% and 5.0–7.5% respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, cow milk, honey, and urine samples.  相似文献   

12.
In this study, a rapid, simple, and efficient sample preparation method based on continuous dispersive liquid–liquid microextraction has been developed for the extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples prior to their analysis by gas chromatography–flame ionization detection. In this method, two parallel glass tubes with different diameters are connected with a teflon stopcock and used as an extraction device. A mixture of disperser and extraction solvents is transferred into one side (narrow tube) of the extraction device and an aqueous phase containing the analytes is filled into the other side (wide tube). Then the stopcock is opened and the mixture of disperser and extraction solvents mixes with the aqueous phase. By this action, the extraction solvent is dispersed continuously as fine droplets into the aqueous sample and the target analytes are extracted into the fine droplets of the extraction solvent. The fine droplets move up through the aqueous phase due to its low density compared to aqueous phase and collect on the surface of the aqueous phase as an organic layer. Finally an aliquot of the organic phase is removed and injected into the separation system for analysis. Several parameters that can affect extraction efficiency including type and volume of extraction and disperser solvents, sample pH, and ionic strength were investigated and optimized. Under the optimum extraction conditions, the extraction recoveries and enrichment factors ranged from 49 to 74% and 1633 to 2466, respectively. Relative standard deviations were in the ranges of 3–6% (n = 6, C = 30 μg L−1) for intra-day and 4–7% (n = 4, C = 30 μg L−1) for inter-day precisions. The limits of detection were in the range of 0.20–0.86 μg L−1. Finally the proposed method was successfully applied to determine the target herbicides in fruit juice and vegetable samples.  相似文献   

13.
A simple ultrasound-assisted dispersive liquid–liquid microextraction method combined with liquid chromatography was developed for the preconcentration and determination of six pyrethroids in river water samples. The procedure was based on a ternary solvent system to formatting tiny droplets of extractant in sample solution by dissolving appropriate amounts of water-immiscible extractant (tetrachloromethane) in watermiscible dispersive solvent (acetone). Various parameters that affected the extraction efficiency (such as type and volume of extraction and dispersive solvent, extraction time, ultrasonic time, and centrifuging time) were evaluated. Under the optimum condition, good linearity was obtained in a range of 0.00059–1.52 mg L−1 for all analytes with the correlation coefficient (r2) > 0.999. Intra-assay and inter-assay precision evaluated as the relative standard deviation (RSD) were less than 3.4 and 8.9%. The recoveries of six pyrethroids at three spiked levels were in the range of 86.2–109.3% with RSD of less than 8.7%. The enrichment factors for the six pyrethroids were ranged from 767 to 1033 folds.  相似文献   

14.
A simple, rapid and efficient method termed dispersive liquid–liquid microextraction combined with liquid chromatography-fluorescence detection, has been developed for the extraction and determination of polycyclic aromatic hydrocarbons (PAHs) in water and fruit juice samples. Parameters such as the kind and volume of extraction solvent and dispersive solvent, extraction time and salt effect were optimized. Under optimum conditions, the enrichment factors ranged from 296 to 462. The linear range was 0.01–100 μg L?1 and limits of detection were 0.001–0.01 μg L?1. The relative standard deviations (RSDs, for 5 μg L?1 of PAHs) varied from 1.0 to 11.5% (n = 3). The relative recoveries of PAHs from tap, river, well and sea water samples at spiking level of 5 μg L?1 were 82.6–117.1, 74.9–113.9, 77.0–122.4 and 86.1–119.3%, respectively. The relative recoveries of PAHs from grape and apple juice samples at spiking levels of 2.5 and 5 μg L?1 were 80.8–114.7 and 88.9–123.0%, respectively. It is concluded that the proposed method can be successfully applied for determination of PAHs in water and fruit juice samples.  相似文献   

15.
A simple and powerful microextraction technique was used for determination of selenium in water samples using dispersive liquid-liquid microextraction (DLLME) followed by graphite furnace atomic absorption spectrometry (GF AAS). DLLME and simultaneous complex formation was performed with rapid injection of a mixture containing ethanol (disperser solvent), carbon tetrachloride (extraction solvent) and ammonium pyrrolidine dithiocarbamate (APDC, chelating agent) into water sample spiked with selenium. After centrifuging, fine droplets of carbon tetrachloride, which were dispersed among the solution and extracted Se-APDC complex, sediment at the bottom of the conical test tube. The concentration of enriched analyte in the sedimented phase was determined by iridium-modified pyrolitic tube graphite furnace atomic absorption spectrometry. The concentration of selenate was obtained as the difference between the concentration of selenite after and before pre-reduction of selenate to selenite. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of chelating agent were optimized. Under the optimum conditions, the enrichment factor of 70 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 0.1-3 μg L− 1 with detection limit of 0.05 μg L− 1. The relative standard deviation (RSDs) for ten replicate measurements of 2.00 μg L− 1 of selenium was 4.5%. The relative recoveries of selenium in tap, river and sea water samples at spiking level of 2.00 μg L− 1 were 106, 96 and 98%, respectively.  相似文献   

16.
A new, efficient, and environmental friendly hollow fiber liquid phase microextraction (HF-LPME) method based on supramolecular solvents was developed for extraction of five benzodiazepine drugs. The supramolecular solvent was produced from coacervation of decanoic acid aqueous vesicles in the presence of tetrabutylammonium (Bu4N+). In this work, benzodiazepines were extracted from aqueous samples into a supramolecular solvent impregnated in the wall pores and also filled inside the porous polypropylene hollow fiber membrane. The driving forces for the extraction were hydrophobic, hydrogen bonding, and π-cation interactions between the analytes and the vesicular aggregates. High-performance liquid chromatography with photodiode array detection (HPLC-DAD) was applied for separation and determination of the drugs. Several parameters affecting the extraction efficiency including pH, hollow fiber length, ionic strength, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, the preconcentration factors were obtained in the range of 112–198. Linearity of the method was determined to be in the range of 1.0–200.0 μg L−1 for diazepam and 2.0–200.0 μg L−1 for other analytes with coefficient of determination (R2) ranging from 0.9954 to 0.9993. The limits of detection for the target benzodiazepines were in the range of 0.5–0.7 μg L−1. The method was successfully applied for extraction and determination of the drugs in water, fruit juice, plasma and urine samples and relative recoveries of the compounds studied were in the range of 90.0–98.8%.  相似文献   

17.
A new dispersive liquid–liquid microextraction based on solidification of floating organic droplet method (DLLME-SFO) was developed for the determination of volatile aldehyde biomarkers (hexanal and heptanal) in human blood samples. In the derivatization and extraction procedure, 2,4-dinitrophenylhydrazine (DNPH) as derivatization reagent and formic acid as catalyzer were injected into the sample solution for derivatization with aldehydes, then the formed hydrazones was rapidly extracted by dispersive liquid–liquid microextraction with 1-dodecanol as extraction solvent. After centrifugation, the floated droplet was solidified in an ice bath and was easily removed for analysis. The effects of various experimental parameters on derivatization and extraction conditions were studied, such as the kind and volume of extraction solvent and dispersive solvent, the amount of derivatization reagent, derivatization temperature and time, extraction time and salt effect. The limit of detections (LODs) for hexanal and heptanal were 7.90 and 2.34 nmol L−1, respectively. Good reproducibility and recovery of the method were also obtained. The proposed method is an alternative approach to the quantification of volatile aldehyde biomarkers in complex biological samples, being more rapid and simpler and providing higher sensitivity compared with the traditional dispersive liquid–liquid microextraction (DLLME) methods.  相似文献   

18.
《Analytical letters》2012,45(13):2075-2088
For the first time, a simple method for magnetic stirring-assisted dispersive suspended microextraction has been developed for the determination of three fungicides (azoxystrobin, diethofencarb, and pyrimethanil) in water and wine samples. The method is based on the solidification of a floating organic droplet coupled with high performance liquid chromatography. In the proposed method, the low toxicity solvent 1-dodecanol was used as the extractant. Both the extraction and phase separation process were performed with magnetic stirring. No centrifugation step was involved. After separating the two phases, the extraction solvent droplet was easily collected through solidification at lower temperature. Important parameters such as the kind and volume of organic extraction solvent, extraction and restoration speed, extraction and restoration time, and salt concentration were optimized. Under the optimal conditions, the limits of detection for the analytes varied from 0.14 to 0.26 µg L?1. The enrichment factors ranged from 125–200. The linearity ranges were 1–2000 µg L?1, yielding correlation coefficients (r) higher than 0.9990. The relative standard deviation (n = 6) at two spiked level of 0.2 µg mL?1 and 4 µg L?1 varied between 2.2% and 7.8%. Finally, the developed technique was successfully applied to determine target fungicides in real water and wine samples, where the obtained recoveries ranged from 83.8–105.3%  相似文献   

19.
Ultrasound-assisted dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography-fluorescence detection was used for the extraction and determination of three biogenic amines including octopamine, tyramine and phenethylamine in rice wine samples. Fluorescence probe 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester was applied for derivatization of biogenic amines. Acetonitrile and 1-octanol were used as disperser solvent and extraction solvent, respectively. Extraction conditions including the type of extraction solvent, the volume of extraction solvent, ultrasonication time and centrifuging time were optimized. After extraction and centrifuging, analyte was injected rapidly into high-performance liquid chromatography and then detected with fluorescence. The calibration graph of the proposed method was linear in the range of 5–500 μg mL−1 (octopamine and tyramine) and 0.025–2.5 μg mL−1 (phenethylamine). The relative standard deviations were 2.4–3.2% (n = 6) and the limits of detection were in the range of 0.02–5 ng mL−1. The method was applied to analyze the rice wine samples and spiked recoveries in the range of 95.42–104.56% were obtained. The results showed that ultrasound-assisted dispersive liquid–liquid microextraction was a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of biogenic amines.  相似文献   

20.
A simple and fast sample preparation method for the determination of nonylphenol (NP) and octylphenol (OP) in aqueous samples by simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) was investigated using gas chromatography–mass spectrometry (GC/MS). In this method, a combined dispersant/derivatization catalyst (methanol/pyridine mixture) was firstly added to an aqueous sample, following which a derivatization reagent/extraction solvent (methyl chloroformate/chloroform) was rapidly injected to combine in situ derivatization and extraction in a single step. After centrifuging, the sedimented phase containing the analytes was injected into the GC port by autosampler for analysis. Several parameters, such as extraction solvent, dispersant solvent, amount of derivatization reagent, derivatization and extraction time, pH, and ionic strength were optimized to obtain higher sensitivity for the detection of NP and OP. Under the optimized conditions, good linearity was observed in the range of 0.1–1000 μg L−1 and 0.01–100 μg L−1 with the limits of detection (LOD) of 0.03 μg L−1 and 0.002 μg L−1 for NP and OP, respectively. Water samples collected from the Pearl River were analyzed with the proposed method, the concentrations of NP and OP were found to be 2.40 ± 0.16 μg L−1 and 0.037 ± 0.001 μg L−1, respectively. The relative recoveries of the water samples spiked with different concentrations of NP and OP were in the range of 88.3–106.7%. Compared with SPME and SPE, the proposed method can be successfully applied to the rapid and convenient determination of NP and OP in aqueous samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号