首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two solid-phase microextraction (SPME) sorbent coatings based on polymeric ionic liquids (PILs) have been utilized for the analysis of complex coffee aroma samples. The PIL-based SPME coatings examined, namely, poly(1-(4-vinylbenzyl)-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide) [poly(VBHDIm+ NTf2)], with ∼14-μm thickness, and poly(1-vinyl-3-hexylimidazolium chloride) [poly(ViHIm+ Cl)], with ∼8-μm thickness, were employed for the headspace determination of up to 49 analytes from four different coffee beans: two French roast coffees of different brands, Sumatra coffee, and decaffeinated Sumatra coffee. The analysis was conducted using gas chromatography coupled to mass spectrometry. For comparative purposes, the commercial polyacrylate (PA, 85-μm film thickness) SPME coating was utilized under the same extraction conditions. The three SPME coatings tested behaved quite differently as a function of the families of compounds extracted. Thus, the poly(VBHDIm+ NTf2) coating was extremely selective for aldehydes while also exhibiting good extraction efficiencies for acids. The poly-(ViHIm+ Cl) coating exhibited superior performance for aromatic alcohols, and the PA coating worked better for heterocyclic aromatics. Both PIL-based SPME sorbent coatings demonstrated exceptional selectivity and extraction efficiency when dealing with complex coffee aromas in spite of their small film thicknesses.  相似文献   

2.
A new generation polymeric ionic liquid (PIL), poly(1-4-vinylbenzyl)-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (poly(VBHDIm+ NTf2)), was synthesized and is shown to exhibit impressive selectivity towards the extraction of 12 polycyclic aromatic hydrocarbons (PAHs) from aqueous samples when used as a sorbent coating in direct-immersion solid-phase microextraction (SPME) coupled to gas chromatography (GC). The PIL was imparted with aromatic character to enhance π–π interactions between the analytes and the sorbent coating. For comparison purposes, a PIL with similar structure but lacking the π–π interaction capability, poly(1-vinyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide) (poly(HDIm+ NTf2)), as well as a commercial polydimethylsiloxane (PDMS) sorbent coating were evaluated and exhibited much lower extraction efficiencies. Extraction parameters, including stir rate and extraction time, were studied and optimized. The detection limits of poly(VBHDIm+ NTf2), poly(HDIm+ NTf2), and PDMS coatings varied between 0.003–0.07 μg L−1, 0.02–0.6 μg L−1, and 0.1–6 μg L−1, respectively. The partition coefficients (log Kfs) of eight PAHs to the three studied fiber coatings were estimated using a static SPME approach. This study represents the first report of analyte partition coefficients to any PIL-based material.  相似文献   

3.
The determination of a group of eighteen pollutants in waters, including polycyclic aromatic hydrocarbons and substituted phenols, is conducted in direct-immersion solid-phase microextraction (SPME) using the polymeric ionic liquid (PIL) poly(1-vinyl-3-hexadecylimidazolium) bis[(trifluoromethyl)sulfonyl]imide as a novel coating material. The performance of the PIL fiber coating in the developed IL-SPME-gas chromatography (GC)–mass spectrometry (MS) method is characterized by average relative recoveries of 92.5% for deionized waters and 90.8% for well waters, average precision values (as relative standard deviations, RSD%) of 11% for deionized waters and 12% for well waters, using a spiked level of 5 ng mL−1. The detection limits oscillate from 0.005 ng mL−1 for fluoranthene to 4.4 ng mL−1 for 4-chloro-3-methylphenol, when using an extraction time of 60 min with 20 mL of aqueous sample. The extraction capabilities of the PIL fiber have been compared with the commercial SPME coatings: polydimethylsyloxane (PDMS) 30 μm, PDMS 100 μm and polyacrylate (PA) 85 μm. The PIL fiber is superior to the PDMS 30 μm for all analytes studied. A qualitative study was also carried out to compare among the nature of the coating materials by normalizing the coating thickness. The PIL material was shown to be more efficient than the PDMS material for all analytes studied. The PIL coating was also adequate for nonpolar analytes whereas the PA material was more sensitive for polar compounds.  相似文献   

4.
The CO2 selectivity of two polymeric task-specific ionic liquid sorbent coatings, poly(1-vinyl-3-hexylimidazolium) bis[(trifluoromethyl)sulfonyl]imide [poly(VHIM-NTf2)] and poly(1-vinyl-3-hexylimidazolium) taurate [poly(VHIM-taurate)], was examined using solid-phase microextraction (SPME) for the determination of CO2 in simulated flue gas. For comparison purposes, a commercial SPME fiber, Carboxen™-PDMS, was also studied. A study into the effect of humidity revealed that the poly(VHIM-taurate) fiber exhibited enhanced resistance to water, presumably due to the unique mechanism of CO2 capture. The effect of temperature on the performance of the PIL-based and Carboxen fibers was examined by generating calibration curves under various temperatures. The sensitivity, linearity, and linear range of the three fibers were evaluated. The extraction of CH4 and N2 was performed and the selectivities of the PIL-based and Carboxen fibers were compared. The poly(VHIM-NTf2) fiber was found to possess superior CO2/CH4 and CO2/N2 selectivities compared to the Carboxen fiber, despite the smaller film thicknesses of the PIL-based fibers. A scanning electron microscopy study suggests that the amine group of the poly(VHIM-taurate) is capable of selectively reacting with CO2 but not CH4 or N2, resulting in a significant surface morphology change of the sorbent coating.  相似文献   

5.
固相微萃取(Solid-phase microextraction,SPME)技术因其具有操作简单、萃取时间短、无需有机溶剂、易于自动化操作等优点,成为近年来发展起来的一种新型样品前处理技术。涂层是SPME技术的核心,决定了涂层萃取的选择性和容量。离子液体和聚离子液体因具有环境友好、蒸汽压低、热稳定性好、设计灵活、粘度大等特点,已作为一类新的涂层材料广泛应用于SPME,并对各种分析物均展现出良好的萃取效果和选择性。本文从制备技术、形貌、选择性、稳定性、寿命、应用等方面综述了近年来离子液体和聚离子液体基SPME涂层的研究进展,对它们的优缺点进行了对比讨论,并对其未来发展方向进行了展望。  相似文献   

6.
Four polymeric ionic liquids based on two different cations, poly(1‐vinyl‐3‐hexylimidazolium) and poly(1‐vinyl‐3‐hexadecylimidazolium), combined with two different anions, bis[(trifluoromethyl)sulfonyl]imide (NTf) and chloride (Cl?), were combined in various weight percentages and used as sorbent coatings for solid‐phase microextraction gas chromatography (SPME‐GC). The selectivity of the fiber coatings for 12 test analytes was examined. The extraction efficiency of n‐alcohols increased with an increase in the weight percentage of chloride ion in the sorbent coating. The ability to tune the interactions between the coating material and the analytes was exploited and resulted in distinct changes in the limits of detection for hydrogen‐bonding analytes with varying chloride ion content in the sorbent coating.  相似文献   

7.
The functionalized polymeric ionic liquid poly(1-(4-vinylbenzyl)-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (poly(VBHDIm(+)NTf(2)(-))) has been used as successful coating in solid-phase microextraction (SPME) to determine a group of fourteen endocrine disrupting chemicals (ECDs), including polycyclic aromatic hydrocarbons (PAHs), alkylphenols, and parabens, in several water samples. The performance of the PIL fiber in direct immersion mode SPME followed by gas chromatography (GC) with flame-ionization detection (FID) is characterized with average relative recoveries higher than 96.1% from deionized waters and higher than 76.7% from drinking bottled waters, with precision values (RSD) lower than 13% for deionized waters and lower than 14% for drinking bottled waters (spiked level of 1 ng mL(-1)), when using an extraction time of 60 min with 20 mL of aqueous sample. Detection limits varied between 9 ng L(-1) and 7 ng mL(-1). A group of real water samples, including drinking waters, well waters, and swimming pool waters, have been analyzed under the optimized conditions. A comparison has also been carried out with the commercial SPME coatings: polydimethylsyloxane (PDMS) 30 μm, and polyacrylate (PA) 85 μm. The functionalized PIL fiber (~12 μm) demonstrated to be superior to both commercial fibers for the overall group of analytes studied, in spite of its lower coating thickness. A normalized sensitivity parameter is proposed as a qualitative tool to compare among fiber materials, being higher for the poly(VBHDIm(+)NTf(2)(-)) coating. Furthermore, the partition coefficients of the studied analytes to the coating materials have been determined. A quantitative comparison among the partition coefficients also demonstrates the superior extraction capability of the functionalized PIL sorbent coating.  相似文献   

8.
Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30% w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.  相似文献   

9.
GC stationary phases composed of binary mixtures of two polymeric ionic liquids (PILs), namely, poly(1‐vinyl‐3‐hexylimidazolium) bis[(trifluoromethyl)sulfonyl]imide (poly(ViHIm‐NTf2))/poly(1‐vinyl‐3‐hexylimidazolium) chloride (poly(ViHIm‐Cl)) and poly(1‐vinyl‐3‐hexadecylimidazolium) bis[(trifluoromethyl)sulfonyl]imide (poly(ViHDIm‐NTf2))/poly(1‐vinyl‐3‐hexadecylimidazolium) chloride (poly(ViHDIm‐Cl)), were evaluated in terms of their on‐set bleed temperature and separation selectivity. A total of six neat or binary PIL stationary phases were characterized using the solvation parameter model to investigate the effects of the polymeric cation and anion and PIL composition on the system constants of the resulting stationary phases. The hydrogen bond basicity of the mixed poly(ViHIm‐NTf2)/poly(ViHIm‐Cl) stationary phases was enriched linearly with the increase in the poly(ViHIm‐Cl) content. Results revealed that tuning the composition of the stationary phase allowed for fine control of the retention factors and separation selectivity for alcohols and carboxylic acids as well as selected ketones, aldehydes, and aromatic compounds. A reversal of elution order was observed for particular classes of analytes when the weight percentage of the chloride‐based PIL was increased.  相似文献   

10.
Three novel electropolymerizable thiophene-based ionic liquids (ILs) were synthesized and characterized as potential candidates for developing selective extraction media for chemical analysis. Electropolymerization of the bis[(trifluoromethyl)sulfonyl]imide ([NTf2]-) analogs successfully produced uniform polymeric thin-films on macro- and microelectrode substrates from both vinyl and methylimidazolium IL monomer derivatives. The resultant conducting polymer IL (CPIL) films were characterized by electrochemical methods and found to exhibit attractive behavior towards anionic species while simultaneously providing an exclusion barrier toward cationic species. Thermogravimetric analysis of the thiophene-based IL monomers established a high thermal stability, particularly for the methylimidazolium IL, which was stable until temperatures above 350 °C. Subsequently, the methylimidazolium IL was polymerized on 125 μm platinum wires and utilized for the first time as a sorbent coating for headspace solid-phase microextraction (HS-SPME). The sorbent coating was easily prepared in a reproducible manner, provided high thermal stability, and allowed for the gas chromatographic analysis of polar analytes. The normalized response of the poly[thioph-C6MIm][NTf2]-based sorbent coating exhibited higher extraction efficiency compared to an 85 μm polyacrylate fiber and excellent fiber-to-fiber reproducibility. Therefore, the electropolymerizable thiophene-based ILs were found to be viable new materials for the preparation of sorbent coatings for HS-SPME.  相似文献   

11.
A simple and economical capillary electrophoresis method has been developed for the analysis of four model basic proteins by employing a polymeric ionic liquid (PIL), poly(1-vinyl-3-butylimidazolium) bromide, as the dynamic coating additive. When a small amount of PIL was present in the background electrolyte, a cationic coating on the inner surface of fused-silica capillary was established. These PIL modified capillaries not only generated a stable reversed electroosmotic flow, but also effectively eliminated the wall adsorption of proteins. Several important parameters such as the PIL concentration in the background electrolyte, pH values and concentrations of the background electrolyte were optimized to improve the separation of basic proteins. Consequently, under the optimum conditions, a satisfied separation of basic proteins with peak efficiencies ranging from 247,000 to 540,000 (plates m−1) had been accomplished within 11 min. The run-to-run RSDs (n = 3) of the migration times for the four basic proteins were all less than 0.37%.  相似文献   

12.
Hou JG  Ma Q  Du XZ  Deng HL  Gao JZ 《Talanta》2004,62(2):241-246
Mesoporous materials were employed as fast, sensitive and efficient fiber coatings of solid-phase microextraction (SPME) for the first time. Three micrometer as-synthesized C16-MCM-41 particles were immobilized onto stainless steel wire with 100 μm coating thickness. In combination with high performance liquid chromatography (HPLC), extraction efficiency and selectivity of C16-MCM-41 were investigated using aromatic hydrocarbons. Effect of extraction and desorption time, extraction temperature, stirring rate and ionic strength on extraction efficiency were examined. Aanalytical merits of SPME with C16-MCM-41 coating were evaluated. The chromatographic peak area is proportional to the concentration of anthracene in the range 0.5-150 μg l−1. The limit of detection was 0.05 μg l−1 (S/N=3) and the relative standard deviation (R.S.D.) was 0.033%.  相似文献   

13.
Ionic liquids (ILs) grafted polymethylsiloxane (PMS) stationary phases (IL-PMS) for capillary gas chromatography (CGC) are described. The stationary phases were synthesized by grafting 1-vinyl-3-hexylimidazolium (VHIm) with either NTf 2 ? or PF6 ? anion to poly(methylhydrosiloxane) (PMS-VHIm-NTf2, PMS-VHIm-PF6) and coated statically onto fused-silica capillary columns. Separation characteristics of the stationary phases involving Abraham solvation parameters, separation ability and thermal stability were investigated. The obtained solvation parameters reveal that both IL-PMS stationary phases exhibited unique intermolecular interactions compared with either ILs or PMS due to the synergistic effect of ILs and PMS chemically combining together. The separation performance of the IL-PMS stationary phases was investigated by a Grob mixture and a complex mixture of 26 compounds of different types. The results show that the present stationary phases exhibit excellent resolution and selectivity for the analytes of interest with narrow and symmetric peak shapes. Thermal stability was also investigated by column bleed profiles with satisfactory results. The satisfactory chromatographic performance and thermal stability of the IL-PMS stationary phases suggest their great potential as a new type of CGC stationary phases.  相似文献   

14.
In this work, two novel crown ether functionalized ionic liquid (FIL)-based solid phase microextraction (SPME) fibers were prepared by sol–gel technology using the synthesized 1-(trimethoxysily)propyl 3-(6′-oxo-benzo-15-crown-5 hexyl) imidazolium bis(trifluoromethanesulphonyl)imide ([TMSP(Benzo15C5)HIM][N(SO2CF3)2]) and 1-allyl-3-(6′-oxo-benzo-15-crown-5 hexyl) imidazolium bis(trifluoromethanesulphonyl)imide ([A(Benzo15C5)HIM][N(SO2CF3)2]) as selective stationary phases. Owing to the introduction of trimethoxysilypropyl to the imidazole cation, the [TMSP(Benzo15C5)HIM][N(SO2CF3)2] could be chemically bonded to the formed sol–gel silica substrate through the hydrolysis and polycondensation reaction. Similarly, the [A(Benzo15C5)HIM][N(SO2CF3)2] was able to participate in the formation of the organic–inorganic copolymer coatings through the free radical crosslinking reaction. These two fibers were determined to have “bubble-like” surface characteristics analogous to a previously prepared [A(Benzo15C5)HIM][PF6]-based fiber. Their thermal stabilities were much higher than that of the [A(Benzo15C5)HIM][PF6]-based coating. They were capable of withstanding temperatures as high as 400 °C without evident loss of the crown ether FILs. They also had strong solvent, acid and alkali resistance, good coating preparation reproducibility and high selectivity for medium polar to polar compounds. The high selectivity of these two fibers could be attributed to the strong ion-dipole, hydrogen bonding and π–π interactions provided by the synergetic effect of ILs and benzo-15-crown-5 functionalities. Moreover, the selectivity of these two fibers was rather different although the structures of these two crown ether FILs were very similar. This is maybe because the relative contents of the crown ether FILs chemically bonded to the organic–inorganic copolymer coatings were quite different when prepared by different sol–gel reaction approaches.  相似文献   

15.
Germania-based sol–gel organic–inorganic hybrid coatings were prepared for on-line coupling of capillary microextraction with high-performance liquid chromatography. For this, a germania-based sol–gel precursor, tetra-n-butoxygermane and a hydroxy-terminated triblock copolymer, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) were used. These sol–gel germania triblock polymer coatings were chemically anchored to the inner walls of a fused silica capillary (0.25 mm I.D.) in course of its evolution from the sol solution. Scanning electron microscopy images of the sol–gel germania triblock polymer coating were obtained to estimate the coating thickness. For the first time, the analyte distribution constants between a sol–gel germania organic–inorganic hybrid coating and the samples (Kcs) were determined. For a variety of analytes from different chemical classes, including polycyclic aromatic hydrocarbons (PAHs), ketones, alcohols, phenols and amines, the Kcs values ranged from 8.1 × 101 to 5.6 × 104. Also, for the first time, the stability of the sol–gel germania-based coating in high-temperature reversed-phase solvent environment was evaluated. The sol–gel germania triblock polymer coatings were capable of surviving exposure to high-temperature solvent conditions (200 °C) with little change in extraction capabilities. This demonstrates that sol–gel germania triblock polymer hybrid materials might be suitable for further applications in high-temperature HPLC. The reproducibility of the method for preparation of the sol–gel germania triblock polymer coatings was also evaluated, and the capillary-to-capillary RSD values ranged from 5.3 to 6.5%. The use of higher flow rates in extraction was found to significantly reduce the time required (from 30–40 to 10–15 min) to reach equilibrium between the sol–gel germania triblock polymer coating and the analytes in the sample solution.  相似文献   

16.
Cathodic electrodeposition (CED) has received great attention in metal-organic frameworks (MOFs) synthesis due to its distinguished properties including simplicity, controllability, mild synthesis conditions, and product continuously. Here, we report the fabrication of thin (Et3NH)2Zn3(BDC)4 (E-MOF-5) film coated solid phase microextraction (SPME) fiber by a one-step in situ cathodic electrodeposition strategy. Several etched stainless steel fibers were placed in parallel in order to achieve simultaneously electrochemical polymerization. The influence of different polymerization parameters Et3NHCl concentration and polymerization time were evaluated. The proposed method requires only 20 min for the preparation of E-MOF-5 coating. The optimum coating showed excellent thermal stability and mechanical durability with a long lifetime of more than 120 repetitions SPME operations, and also exhibited higher extraction selectivity and capacity to four estrogens than commonly-used commercial PDMS coating. The limits of detection for the estrogens were 0.17–0.56 ng mL−1. Fiber-to-fiber reproducibility (n = 8) was in the respective ranges of 3.5%–6.1% relative standard deviation (RSD) for four estrogens for triplicate measurements at 200 ng mL−1. Finally, the (E-MOF-5) coated fiber was evaluated for ethinylestradiol (EE2), bisphenol A (BPA), diethylstilbestrol (DES), and hexestrol (HEX) extraction in the spiked milk samples. The extraction performance of this new coating was satisfied enough for repeatable use without obvious decline.  相似文献   

17.
A series of ionic liquids (ILs) monolithic capillary columns based on 1-vinyl-3-octylimidazolium (ViOcIm+) were prepared by two approaches (“one-pot” approach and “anion-exchange” approach). The effects of different anions (bromide, Br; tetrafluoroborate, BF4; hexafluorophosphate, PF6; and bis-trifluoromethanesulfonylimide, NTf2) on chromatography performance of all the resulting columns were investigated systematically under capillary electrochromatography (CEC) mode. The results indicated that all these columns could generate a stable reversed electroosmotic flow (EOF) over a wide pH range from 2.0 to 12.0. For the columns prepared by “one-pot” approach, the EOF decreased in the order of ViOcIm+Br > ViOcIm+BF4 > ViOcIm+PF6 > ViOcIm+NTf2 under the same CEC conditions; the ViOcIm+Br based column exhibited highest column efficiencies for the test small molecules; the ViOcIm+NTf2 based column possessed the strongest retention for aromatic hydrocarbons; and baseline separation of four standard proteins was achieved on ViOcIm+NTf2 based column corresponding to the highest column efficiency of 479 000 N m−1 for cytochrome c (Cyt c). These results indicated that the property of ILs based columns could be tuned successfully by changing anions, which gave these columns potential to separate both small molecules and macro biomolecules.  相似文献   

18.
A novel solid phase microextraction (SPME) fiber was fabricated by electrospinning method in which a polymeric solution was converted to nanofibers using high voltages. A thin stainless steel wire was coated by the network of polymeric nanofibers. The polymeric nanofiber coating on the wire was mechanically stable due to the fine and continuous nanofibers formation around the wire with a three dimensional structure. Polyamide (nylon 6), due to its suitable characteristics was used to prepare the unbreakable SPME nanofiber. The scanning electron microscopy (SEM) images of this new coating showed a diameter range of 100–200 nm for polyamide nanofibers with a homogeneous and porous surface structure. The extraction efficiency of new coating was investigated for headspace solid-phase microextraction (HS-SPME) of some environmentally important chlorophenols from aqueous samples followed by gas chromatography–mass spectrometry (GC–MS) analysis. Effect of different parameters influencing the extraction efficiency including extraction temperature, extraction time, ionic strength and polyamide amount were investigated and optimized. In order to improve the chromatographic behavior of phenolic compounds, all the analytes were derivatized prior to the extraction process using basic acetic anhydride. The detection limits of the method under optimized conditions were in the range of 2–10 ng L−1. The relative standard deviations (RSD) (n = 3) at the concentration level of 1.7–6.7 ng mL−1 were obtained between 1 and 7.4%. The calibration curves of chlorophenols showed linearity in the range of 27–1330 ng L−1 for phenol and monochlorophenols and 7–1000 ng L−1 for dichloro and trichlorophenols. Also, the proposed method was successfully applied to the extraction of phenol and chlorophenols from real water samples and relative recoveries were between 84 and 98% for all the selected analytes except for 2,4,6 tricholophenol which was between 72 and 74%.  相似文献   

19.
In this work, a molecular sol–gel imprinting approach has been introduced to produce a fiber coating for selective direct immersion solid-phase microextraction (SPME) of caffeine. The polymerization mixture was composed of vinyl trimethoxysilane and methacrylic acid as vinyl sol–gel precursor and functional monomer, respectively. Caffeine was used as template molecule during polymerization process. The prepared fibers could be coupled directly to gas chromatography/mass spectrometry (GC/MS) and used for trace analysis of caffeine in a complex sample such as human serum. The parameters influencing SPME such as time, temperature and stirring speed were optimized. The prepared coating showed good selectivity towards caffeine in the presence of some structurally related compounds. Also, it offered high imprinting capability in comparison to bare fiber and non-imprinted coating. Linear range for caffeine detection was 1–80 μg mL−1 and the limit of detection was 0.1 μg mL−1. The intra-day and inter-day precisions of the peak areas for five replicates were 10 and 16%, respectively.  相似文献   

20.
A novel polymeric ionic liquid (PIL) microsphere, poly(1-vinyl-3-(2-methoxy-2-oxyl ethyl)imidazolium) hexafluorophosphate, is prepared via W/O emulsion polymerization. Rapid ion-exchange between the anionic moieties of PIL and DNA fragments is demonstrated facilitating the exchange equilibrium to be reached within 1 min. The PIL microspheres exhibit a high capacity of 190.7 μg mg−1 for DNA adsorption. A fast DNA isolation protocol is thus developed with the PIL microspheres as solid phase adsorbent. It is feasible to facilitate DNA adsorption or stripping from the microspheres by simply regulating the concentration of salt. DNA adsorption is facilitated at low salt concentration, while higher concentration of salt entails DNA recovery from the microspheres. In practice, the retained DNA could be readily recovered with 1.0 mol L−1 NaCl as stripping reagent, giving rise to a recovery of ca. 80.7%. The PIL microspheres are used for the adsorption/isolation of plasmid DNA from E. coli cell culture, demonstrating a superior adsorption performance with respect to that achieved by a commercial Plasmid Miniprep Kit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号