首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

4.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

5.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

6.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

7.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

8.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

9.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

10.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

11.
闫超  李梅  路庆华 《化学进展》2011,23(4):649-656
润湿性是固体表面的重要性质之一,主要由表面的化学组成和微观几何结构共同决定。不粘连表面是指具有特殊的表面形貌及性能,使得诸如尘土、水、冰以及污染物较难黏附的特殊表面。液体弹珠是被高疏水性颗粒包裹形成的不润湿的液滴,可以稳定地静置于固体及液体表面。本文介绍了液体弹珠的结构和制备方法,综述了液体弹珠的静态力学性能及其在磁场电场下的响应性能,探讨了这种新型不粘连体系用于移动和控制微量液滴的独特优势,展望了其发展趋势以及应用前景。  相似文献   

12.
《中国化学快报》2021,32(11):3416-3420
Tracking the movement of droplets in digital microfluidics is essential to improve its control stability and obtain dynamic information for its applications such as point-of-care testing, environment monitoring and chemical synthesis. Herein, an intelligent, accurate and fast droplet tracking method based on machine vision is developed for applications of digital microfluidics. To continuously recognize the transparent droplets in real-time and avoid the interferes from background patterns or inhomogeneous illumination, we introduced the correlation filter tracker, enabling online learning of the multi-features of the droplets in Fourier domain. Results show the proposed droplet tracking method could accurately locate the droplets. We also demonstrated the capacity of the proposed method for estimation of the droplet velocity as faster as 20 mm/s, and its application in online monitoring the Griess reaction for both colorimetric assay of nitrite and study of reaction kinetics.  相似文献   

13.
《Liquid crystals》2000,27(8):1021-1027
The synthesis and characterization of the coating properties of liquid crystalline acrylic copolymers containing p -hydroxybenzoic acid as mesogenic group are described. The synthetic method involves the grafting of p-hydroxybenzoic acid onto acrylic copolymers, confirmed by characterization with IR and 1H NMR techniques. The presence of liquid crystal was assessed by observing optical textures under the polarizing microscope and by DSC and TGA. The coating properties such as flexibility, hardness, adhesion, drying time, viscosity, etc. of acrylic copolymers as well as of liquid crystalline acrylic copolymers were studied. The results showed that LC polymers have potential for coating applications.  相似文献   

14.
Polymer particles are key materials in various biomedical applications, including drug delivery, cellular immunity, cell capture, biochip, etc. Droplets produced by microfluidics have been widely applied as templates for the fabrication of polymer particles with controllable sizes and narrow size distributions. Compared to smooth polymer particles, those with surface microstructures (e.g., tentacles, bubbles, wrinkles and pits) are more attractive due to their increased surface area and biomimetic structural characteristics. In this review, we summarized representative methods for the preparation of monodispersed polymer particles with various surface microstructures based on droplet microfluidics, as well as their typical bioapplications in drug delivery, cellular immunity and cell capture. Finally, the current challenges and further development in this research area are discussed.  相似文献   

15.
Magnetic digital microfluidics uses magnetic force to manipulate droplets on a Teflon‐coated substrate through the added magnetic particles. To achieve a wide range of droplet manipulation, hydrophilic patterns, known as surface energy traps, are introduced onto the Teflon‐coated hydrophobic substrate. However, the Teflon‐coated substrate is difficult to modify because it is nonwettable, and existing techniques for patterning surface energy traps have many limitations. Inspired by the mussel adhesion mechanism, we use polydopamine, a bioinspired substance that adheres strongly to almost any materials, to pattern surface energy traps on the Teflon‐coated substrate with a great ease. We have optimized the polydopamine coating protocol and characterized the surface properties of the polydopamine surface energy traps. Droplet operations including particle extraction, liquid dispensing, liquid shaping, and cross‐platform transfer have been demonstrated on the polydopamine surface energy trap‐enabled magnetic digital microfluidic platform in both single‐plate and two‐plate configurations. Furthermore, the detection of hepatitis B surface antigen using ELISA has been demonstrated on the new magnetic dgitial microfluidic platform. This new bioinspired magnetic digital microfluidic platform is easy to fabricate and operate, showing a great potential for point‐of‐care applications.  相似文献   

16.
The ability to make artificial lipid bilayers compatible with a wide range of environments, and with sufficient structural rigidity for manual handling, would open up a wealth of opportunities for their more routine use in real‐world applications. Although droplet interface bilayers (DIBs) have been demonstrated in a host of laboratory applications, from chemical logic to biosynthesis reaction vessels, their wider use is hampered by a lack of mechanical stability and the largely manual methods employed in their production. Multiphase microfluidics has enabled us to construct hierarchical triple emulsions with a semipermeable shell, in order to form robust, bilayer‐bound, droplet networks capable of communication with their external surroundings. These constructs are stable in air, water, and oil environments and overcome a critical obstacle of achieving structural rigidity without compromising environmental interaction. This paves the way for practical application of artificial membranes or droplet networks in diverse areas such as medical applications, drug testing, biophysical studies and their use as synthetic cells.  相似文献   

17.
This work describes the preparation and stability evaluation of suspensions consisting of hydrophobic magnetite nanoparticles dispersed in different organic solvents. The ferrite particles are covered by a shell of chemisorbed oleate ions following a procedure that is described in detail. The oleate-covered particles were dispersed in different organic solvents with dielectric constants, epsilon(r), ranging between 1.8 and 9, and the centrifugal field strength needed to remove particle aggregates formed during the synthesis was determined for the different liquid carriers used. A thermodynamic analysis demonstrated that the observed stability of the suspensions in liquids with epsilon(r) < 5 is well correlated with the very low lyophobic attraction between the particles. This can easily be surmounted by thermal agitation, since the van der Waals attraction is negligible. In contrast, for liquids with epsilon(r) > 9, the suspensions become unstable because of the combined action of the van der Waals and lyophobic attractions, the latter being dominant for very polar solvents. Finally, a complete magnetic characterization of the oleate-magnetite powder, as well as of several stable ferrofluids prepared with it, was carried out. From this characterization, the magnetic diameters and magnetic moments of the particles immersed in the different liquid carriers were estimated and compared to those corresponding to the dry magnetic particles. This made it possible to estimate the thickness of the nonmagnetic layer on the particles.  相似文献   

18.
Yang S  Guo F  Kiraly B  Mao X  Lu M  Leong KW  Huang TJ 《Lab on a chip》2012,12(12):2097-2102
Multifunctional Janus particles have a variety of applications in a wide range of fields. However, to achieve many of these applications, high-throughput, low-cost techniques are needed to synthesize these particles with precise control of the various structural/physical/chemical properties. Microfluidics provides a unique platform to fabricate Janus particles using carefully controlled liquid flow in microfluidic channels to form Janus droplets and various types of solidification methods to solidify them into Janus particles. In this Focus article, we summarize the most recent representative works on Janus particle fabrication in microfluidics. The applications of Janus particles in biomedical areas are emphasized. We believe that microfluidics-enabled multifunctional Janus particles could resolve multiple prevalent issues in biomedicine (e.g., disease monitoring at an early stage, high-throughput bioassays, therapeutic delivery) if persistent effort and collaboration are devoted to this direction.  相似文献   

19.
Coatings developed to reduce biofouling of engineered surfaces do not always perform as expected based on their native properties. One reason is that a relatively small number of highly adhesive sites, or the heterogeneity of the coated surface, may control the overall response of the system to initial bacterial deposition. It is shown here using an approach we call spectral force analysis (SFA), based on force volume imaging of the surface with atomic force microscopy, that the behavior of surfaces and coatings can be better understood relative to bacterial adhesion. The application of vapor deposited TiO2 metal oxide increased bacterial and colloid adhesion, but coating the surface with silica oxide reduced adhesion in a manner consistent with SFA based on analysis of the “stickiest” sites. Application of a TiO2-based paint to a surface produced a relatively non-fouling surface. Addition of a hydrophilic layer coating to this surface should have decreased fouling. However, it was observed that this coating actually increased fouling. Using SFA it was shown that the reason for the increased adhesion of bacteria and particles to the hydrophilic layer was that the surface produced by this coating was highly heterogeneous, resulting in a small number of sites that created a stickier surface. These results show that while it is important to manufacture surfaces with coatings that are relatively non-adhesive to bacteria, it is also essential that these coatings have a highly uniform surface chemistry.  相似文献   

20.
Droplet microfluidics has emerged as a powerful tool for a diverse range of biomedical and industrial applications such as single-cell analysis, directed evolution, and metabolic engineering. In these applications, droplet sorting has been effective for isolating small droplets encapsulating molecules, cells, or crystals of interest. Recently, there is an increased interest in extending the applicability of droplet sorting to larger droplets to utilize their size advantage. However, sorting throughputs of large droplets have been limited, hampering their wide adoption. Here, we report our demonstration of high-throughput fluorescence-activated droplet sorting of 1 nL droplets using an upgraded version of the sequentially addressable dielectrophoretic array (SADA), which we reported previously. The SADA is an array of electrodes that are individually and sequentially activated/deactivated according to the speed and position of a droplet passing nearby the array. We upgraded the SADA by increasing the number of driving electrodes constituting the SADA and incorporating a slanted microchannel. By using a ten-electrode SADA with the slanted microchannel, we achieved fluorescence-activated droplet sorting of 1 nL droplets at a record high throughput of 1752 droplets/s, twice as high as the previously reported maximum sorting throughput of 1 nL droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号