首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of [8,8-(PPh(3))(2)-nido-8,7-RhSB(9)H(10)] (1) with PR(3) in a 1:2 ratio affords mixtures that contain the mono-substituted bis-PR(3)-ligated rhodathiaboranes [8,8-(PPh(3))(L)-nido-8,7-RhSB(9)H(10)] [L = PMe(2)Ph (5), PMe(3) (6)] and the corresponding tris-PR(3)-ligated compounds [8,8,8-(L)(3)-nido-8,7-RhSB(9)H(10)] [L = PMe(2)Ph (7), PMe(3) (8)]. These latter species are more conveniently prepared from the reaction of 1 with three equivalents of the monodentate phosphines, PMe(2)Ph and PMe(3). Reaction between 1 and PMePh(2) in a 1:2 ratio yields the disubstituted rhodathiaborane [8,8-(PMePh(2))(2)-nido-8,7-RhSB(9)H(10)] (4), whereas the use of three equivalents of phosphine leads to the formation of B-ligated eleven-vertex [8,8,8-(PMePh(2))(2)(H)-nido-8,7-RhSB(9)H(9)-9-(PMePh(2))] (9). Compounds 4-9 have been characterized by NMR spectroscopy, and the structures of 8 and 9 confirmed by X-ray diffraction analyses. The characterization of the cluster compounds has been aided by the use of DFT calculations on some of the species. Variable-temperature NMR studies have demonstrated a lability of the PMePh(2) ligands in compounds 4 and 9, providing mechanistic insights about the ligand substitutional chemistry in these eleven-vertex rhodathiaboranes.  相似文献   

2.
Treatment of [RhCl(eta4-diene)]2 (diene = nbd, cod) with the N-heterocyclic ligands 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and pyridine (py) followed by addition of Cs[arachno-6-SB9H12] affords the corresponding salts, [Rh(eta4-diene)(L2)][SB9H12] [diene = cod, L2 = bpy (1), Me2bpy (3), phen (5), (py)2 (7); diene = nbd, L2 = bpy (2), Me2bpy (4), phen (6), (py)2 (8)]. These compounds are characterized by NMR spectroscopy and mass spectrometry, and in addition, the cod-Rh species 1 and 3 are studied by X-ray diffraction analysis. These saltlike reagents are stable in the solid state, but in solution the rhodium(I) cations, [Rh(eta4-diene)(L2)]+, react with the polyhedral anion [SB9H12]- leading to a chemistry that is controlled by the d8 transition element chelates. The nbd-Rh(I) complexes react faster than the cod-Rh(I) counterparts, leading, depending on the conditions, to the synthesis of new rhodathiaboranes of general formulas [8,8-(L2)-nido-8,7-RhSB9H10] [L2 = bpy (9), Me2bpy (10), phen (11), (py)2 (12)] and [8,8-(L2)-8-(L')-nido-8,7-RhSB9H10] [L' = PPh3, L2 = bpy (13), Me2bpy (14), phen (15); L' = NCCH3, L2 = bpy (16), Me2bpy (17), phen (18)]. Compound 13 is characterized by X-ray diffraction analysis confirming the 11-vertex nido-structure of the rhodathiaborane analogues 14-18. In dichloromethane, 1 and 3 yield mixtures that contain the 11-vertex rhodathiaboranes 9 and 10 together with new species. In contrast, the cod-Rh(I) reagent 5 affords a single compound, which is proposed to be an organometallic rhodium complex bound exo-polyhedrally to the thiaborane cage. In the presence of H2(g) and stoichiometric amounts of PPh3, the cod-Rh(I) reagents, 1, 3, and 5, afford the salts [Rh(H)2(L2)(PPh3)2][SB9H12] [L2 = bpy (19), Me2bpy (20), phen (21)]. Similarly, in an atmosphere of CO(g) and in the presence of PPh3, compounds 1-6 afford [Rh(L2)(PPh3)2(CO)][SB9H12] (L2 = bpy (22), Me2bpy (23), phen (24)]. The structures of 19 and 24 are studied by X-ray diffraction analysis. The five-coordinate complexes [Rh(L2)(PPh3)2(CO)]+ undergo PPh3 exchange in a process that is characterized as dissociative. The observed differences in the reactivity of the nbd-Rh(I) salts versus the cod-Rh(I) analogues are rationalized on the basis of the higher kinetic lability of the nbd ligand and its faster hydrogenation relative to the cod diene.  相似文献   

3.
Reaction between [RhCl(PPh(3))(3)] and the [nido-6-NB(9)H(11)](-) anion in CH(2)Cl(2) yields orange eleven-vertex [8,8-(PPh(3))(2)-nido-8,7-RhNB(9)H(11)]. Reaction of the [nido-6-CB(9)H(12)](-) anion with [cis-PtCl(2)(PMe(2)Ph)(2)] in methanol affords yellow eleven-vertex [9-(OMe)-8,8-(PMe(2)Ph)(2)-nido-8,7-PtCB(9)H(10)], which is also formed from the reaction of MeOH with [8,8-(PPh(3))(2)-nido-8,7-PtCB(9)H(10)]. Both compounds have been characterised by single-crystal X-ray diffraction analysis and examined by NMR spectroscopy and have structures based on eleven-vertex nido-type geometries, with the metal centre and the heteroatoms in the adjacent (8)- and (7)-positions on the pentagonal open face. The metal-to-heteroborane bonding sphere of is fluxional, with a DeltaG(double dagger) value of 48.4 kJ mol(-1). DFT calculations on the model compounds [8,8-(PH(3))(2)-nido-8,7-RhNB(9)H(11)] and [8,8-(PH(3))(2)-nido-8,7-RhSB(9)H(10)] have been carried out to define the fluxional process and the intermediates involved.  相似文献   

4.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2003,42(4):1092-1100
The doubly bridged pyridine-2-thionate (pyS) dimolybdenum complex [Mo(eta(3)-C(3)H(5))(CO)(2)](2)(mu-eta(1),eta(2)-pyS)(2) (1) is accessible by the reaction of [Mo(eta(3)-C(3)H(5))(CO)(2)(CH(3)CN)(2)Br] with pySK in methanol at room temperature. Complex 1 reacts with piperidine in acetonitrile to give the complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(2)-pyS)(C(5)H(10)NH)] (2). Treatment of 1 with 1,10-phenanthroline (phen) results in the formation of complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(1)-pyS)(phen)] (3), in which the pyS ligand is coordinated to Mo through the sulfur atom. Four conformational isomers, endo,exo-complexes [Mo(eta(3)-C(3)H(5))(CO)(eta(2)-pyS)(eta(2)-diphos)] (diphos = dppm, 4a-4d; dppe, 5a-5d), are accessible by the reactions of 1 with dppm and dppe in refluxing acetonitrile. Homonuclear shift-correlated 2-D (31)P((1)H)-(31)P((1)H) NMR experiments of the mixtures 4a-4d have been employed to elucidate the four stereoisomers. The reaction of 4 and pySK or [Mo(CO)(3)(eta(1)-SC(5)H(4)NH)(eta(2)-dppm)] (6) and O(2) affords allyl-displaced seven-coordinate bis(pyridine-2-thionate) complex [Mo(CO)(eta(2)-pyS)(2)(eta(2)-dppm)] (7). All of the complexes are identified by spectroscopic methods, and complexes 1, 5d, 6, and 7 are determined by single-crystal X-ray diffraction. Complexes 1 and 5d crystallize in the orthorhombic space groups Pbcn and Pbca with Z = 4 and 8, respectively, whereas 6 belongs to the monoclinic space group C2/c with Z = 8 and 7 belongs to the triclinic space group Ponemacr; with Z = 2. The cell dimensions are as follows: for 1, a = 8.3128(1) A, b = 16.1704(2) A, c = 16.6140(2) A; for 5d, a = 17.8309(10) A, b = 17.3324(10) A, c = 20.3716(11) A; for 6, a = 18.618(4) A, b = 16.062(2) A, c = 27.456(6) A, beta = 96.31(3) degrees; for 7, a = 9.1660(2) A, b = 12.0854(3) A, c = 15.9478(4) A, alpha = 78.4811(10) degrees, beta = 80.3894(10) degrees, gamma = 68.7089(11) degrees.  相似文献   

5.
The reaction of nido-[7,8,9-PC(2)B(8)H(11)] (1) with [[CpFe(CO)(2)](2)] (Cp=eta(5)-C(5)H(5) (-)) in benzene (reflux, 3 days) gave an eta(1)-bonded complex [7-Fp-(eta(1)-nido-7,8,9,-PC(2)B(8)H(10))] (2; Fp=CpFe(CO)(2); yield 38 %). A similar reaction at elevated temperatures (xylene, reflux 24 h) gave the isomeric complex [7-Fp-(eta(1)-nido-7,9,10-PC(2)B(8)H(10))] (3; yield 28 %) together with the fully sandwiched complexes [1-Cp-closo-1,2,4,5-FePC(2)B(8)H(10)] 4 a (yield 30%) and [1-Cp-closo-1,2,4,8-FePC(2)B(8)H(10)] 4 b (yield 5%). Compounds 2 and 3 are isolable intermediates along the full eta(5)-complexation pathway of the phosphadicarbaborane cage; their heating (xylene, reflux, 24 h) leads finally to the isolation of compounds 4 a (yields 46 and 52%, respectively) and 4 b (yields 4 and 5%, respectively). Moreover, compound 3 is isolated as a side product from the heating of 2 (yield 10%). The structure of compound 4 a was determined by an X-ray structural analysis and the constitution of all compounds is consistent with the results of mass spectrometry and IR spectroscopy. Multinuclear ((1)H, (11)B, (31)P, and (13)C), two-dimensional [(11)B-(11)B]-COSY, and (1)H[(11)B(selective)] magnetic resonance measurements led to complete assignments of all resonances and are in excellent agreement with the structures proposed.  相似文献   

6.
The reaction of the sodium salt of 1-amino-closo-dodecaborate [Na]2[NH2-B12H11] ([Na]2[1]) with [Au(PPh3)Cl] and [Ni(THF)2(Br)2] led to eta 1(N) coordination of 1in [Na][Au(PPh3)(NH2-B12H11)] (2) and [Na]6[Ni(NH2-B12H11)4] (3), respectively. Furthermore, eta 2(N,BH) coordination of was found in [MePPh3][Rh(PPh3)2(NH2-B12H11)] (4), which was synthesized by the reaction of [MePPh3][Na][1] with [Rh(PPh3)3Cl]. All compounds were characterized by single crystal X-ray diffraction and heteronuclear NMR spectroscopy.  相似文献   

7.
Deprotonation of mixtures of the triazene complexes [RhCl(CO)2(p-MeC6H4NNNHC6H4Me-p)] and [PdCl(eta(3)-C3H5)(p-MeC6H4NNNHC6H4Me-p)] or [PdCl2(PPh3)(p-MeC6H4NNNHC6H4Me-p)] with NEt3 gives the structurally characterised heterobinuclear triazenide-bridged species [(OC)2Rh(mu-p-MeC6H4NNNC6H4Me-p)2PdLL'] {LL' = eta(3)-C3H5 1 or Cl(PPh3) 2} which, in the presence of Me3NO, react with [NBu(n)4]I, [NBu(n)4]Br, [PPN]Cl or [NBu(n)4]NCS to give [(OC)XRh(mu-p-MeC6H4NNNC6H4Me-p)2PdCl(PPh3)]- (X = I 3-, Br 4-, Cl 5- or NCS 6-) and [NBu(n)4][(OC)XRh(mu-p-MeC6H4NNNC6H4Me-p)2Pd(eta(3)-C3H5)], (X = I 7- or Br 8-). The allyl complexes 7- and 8- undergo one-electron oxidation to the corresponding unstable neutral complexes 7 and 8 but, in the presence of the appropriate halide, oxidative substitution results in the stable paramagnetic complexes [NBu(n)4][X2Rh(mu-p-MeC6H4NNNC6H4Me-p)2Pd(eta(3)-C3H5)], (X = I 9- or Br 10-). X-Ray structural (9-), DFT and EPR spectroscopic studies are consistent with the unpaired electron of 9- and 10- localised primarily on the Rh(II) centre of the [RhPd]4+ core, which is susceptible to oxygen coordination at low temperature to give Rh(III)-bound superoxide.  相似文献   

8.
Reaction of the [arachno-4-NB(8)H(12)](-) anion with [RhCl(2)(eta(5)-C(5)Me(5))](2) in CH(2)Cl(2) at room temperature affords a mixture of red '6,9' isomer [9-(eta(5)-C(5)Me(5))-nido-6,9-NRhB(8)H(11)] () and its yellow '6,8' isomer, [8-(eta(5)-C(5)Me(5))-nido-6,8-NRhB(8)H(11)] (). Under the same conditions, reactions of with [IrCl(2)(eta(5)-C(5)Me(5))](2) and [RuCl(2)(eta(6)-MeC(6)H(4)-4-(iso)Pr)](2) give the '6,8' isomers, yellow [8-(eta(5)-C(5)Me(5))-nido-6,8-NIrB(8)H(11)] () and red [8-(eta(6)-MeC(6)H(4)-4-(iso)Pr)-nido-6,8-NRuB(8)H(11)] (), respectively. In contrast, [IrCl(PPh(3))(3)] yields orange [9,9-(PPh(3))(2)-9-H-nido-6,9-NIrB(8)H(11)] (), which exhibits the '6,9' configuration. Compound isomerizes quantitatively in solution to give . At high temperatures, compound gives the yellow '6,8' species, [8,8-(PPh(3))(2)-8-H-nido-6,8-NIrB(8)H(11)] (), in low yields. Possible mechanisms for the unprecedented 6,9 --> 6,8 isomerization are discussed.  相似文献   

9.
10.
In one synthetic step from the readily available 9-Me(2)SCH(2)-nido-7,8-C(2)B(9)H(11) (compound 1), the first representative of the eleven-vertex hypho family of tricarbaboranes, [2,5,12-C(3)B(8)H(15)][X] (X=[NMe4]+ or [PPh4]+) (compound 2), has been isolated in 32% yield and structurally characterised by single-crystal X-ray diffraction, multi-nuclear NMR spectroscopy, mass spectrometry, and computational methods. Both [NMe4]+ or [PPh4]+ salts of anion 2 were found to undergo degradative conversion to the [hypho-6,7-C(2)B(6)H(13)]- anion (anion 3) in alkaline medium. The [PPh4]+ salt of anion 2 converted quantitatively to the [6-CH3-arachno-5,10-C(2)B(8)H(12)]- anion (anion 4) if passed through a silica column or to the neutral 5-CH3-arachno-6,9-C(2)B(8)H(13) (compound 5) on treatment of its [NMe4]+ salt with dilute HCl. Moreover, the reaction of compound 2 with [RhCl2(C(5)Me(5))]2 afforded the eleven-vertex ruthenadicarbaborane [1-C(5)Me(5)-4-CH(3)-closo-1,2,3-RhC(2)B(8)H(9)] (compound 8). All these reactions resulted in an extrusion of one of the cluster carbon atoms into an exoskeletal position.  相似文献   

11.
Seven new d10 metal coordination polymers with isomeric benzenedicarboxylates and 3-(2-pyridyl)pyrazole ligands, [Zn2 L2(1,2-BDC)(H2O)]n ( 1), {[Cd2(H L)2(1,2-BDC)2] x H2O}n ( 2), [Cd(H L)(1,2-BDC)(H2O)]n (3), [Zn(H L)(1,3-BDC)(H2O) x 3H2O]n ( 4), [Cd2 L2(1,3-BDC)(H2O)]n (5), [Zn(H L)2(1,4-BDC)]n ( 6) and [Cd(H L)2(1,4-BDC)]n (7) (BDC = benzenedicarboxylate, H L = 3-(2-pyridyl)pyrazole), have been synthesized and structurally characterized by elemental analysis, IR and X-ray diffraction. Single-crystal X-ray analyses reveal that each complex takes a different one-dimensional (1D) chain structure. In 1-7, the BDCs act as bridging ligands, exhibiting rich coordination modes to link metal ions. The three BDC isomers exhibit different coordination modes: micro(1)-eta(1):eta(1)/micro(3)-eta(2):eta(1), micro(3)-eta(1):eta(2)/micro(3)-eta(2):eta(1), micro(2)-eta(1):eta(1)/micro(1)-eta(1):eta(0) and micro(1)-eta(1):eta(1)/micro(1)-eta(1):eta(0) for 1,2-BDC, micro(1)-eta(1):eta(1)/micro(1)-eta(1):eta(0) and micro(1)-eta(1):eta(0)/micro(2)-eta(2):eta(1) for 1,3-BDC, and micro(1)-eta(1):eta(0)/micro(1)-eta(0):eta(1), micro(1)-eta(1):eta(0)/micro(1)-eta(1):eta(0) and micro(1)-eta(1):eta(1)/micro(1)-eta(1):eta(1) for 1,4-BDC, respectively. In these complexes, H acts as a simple bidentate chelate ligand (in 2, 3, 4, 6 and 7), similar to 2,2'-bipyridine, or as a tridentate chelate-bridging ligand (in 1 and 5) via deprotonation of the pyrazolyl NH group and coordination of the pyrazolyl N atom to a second metal ion. The structural differences indicate that the backbone of such dicarboxylate ligands plays an important role in governing the structures of such metal-organic coordination architectures, and the chelating bipyridyl-like ligand H leads to the formation of these coordination polymers with one-dimensional structures by occupying the coordination sites of metal ions. Moreover, the photoluminescent properties of complexes were also studied in the solid-state at room temperature.  相似文献   

12.
The heterodinuclear d(9)-d(9) title compound 1, whose crystal structure has been solved, reacts with dppm [bis(diphenylphosphino)methane] in the presence of NaBF4 to generate the salt [ClPd(mu-dppm)2Pt(eta(1)-dppm)][BF4] (2a), which contains a Pt-bound dangling dppm ligand. 2a has been characterized by 1H and 31P NMR, Fourier transform Raman [nu(Pd-Pt) = 138 cm(-1)], and UV-vis spectroscopy [lambda(max)(dsigma-dsigma*) = 366 nm]. In a similar manner, [ClPd(mu-dppm)2Pt(eta(1)-dppm=O)][BF4] (2b), ligated with a dangling phosphine oxide, has been prepared by the addition of dppm=O. The molecular structure of 2b has been established by an X-ray diffraction study. 2a reacts with 1 equiv of NaBH4 to form the platinum hydride complex [(eta(1)-dppm)Pd(mu-dppm)2Pt(H)][BF4] (3). Both 2a and 3 react with an excess of NaBH4 to provide the mixed-metal d(10)-d(10) compound [Pd(mu-dppm)3Pt] (4). The photophysical properties of 4 were studied by UV-vis spectroscopy [lambda(max)(dsigma-dsigma*) = 460 nm] and luminescence spectroscopy (lambda(emi) = 724 nm; tau(e) = 12 +/- 1 micros, 77 K). The protonation of 1 and 4 leads to [ClPd(mu-dppm)2(mu-H)PtCl]+ (5) and 3, respectively. Stoichiometric treatment of 1 with cyclohexyl or xylyl isocyanide yields [ClPd(mu-dppm)2Pt(CNC6H11)]Cl (6a) and [ClPd(mu-dppm)2Pt(CN-xylyl)]Cl (6b) ligated by terminal-bound CNR ligands. In contrast, treatment of 1 with the phosphonium salt [C[triple bond]NCH2PPh3]Cl affords the structurally characterized A-frame compound [ClPd(mu-dppm)2(mu-C=NCH2PPh3)PtCl]Cl (6c), spanned by a bridging isocyanide ligand. The electrochemical reduction of 2a at -1.2 V vs SCE, as well as the reduction of 5 in the presence of dppm, leads to a mixture of products 3 and 4. Further reduction of 3 at -1.7 V vs SCE generates 4 quantitatively. The reoxidation at 0 V of 4 in the presence of Cl- ions produces back complex 2a. The whole mechanism of the reduction of 1 has been established.  相似文献   

13.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

14.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

15.
The indenylruthenium hydride complex (eta(5)-C(9)H(7))Ru(dppm)H was found to be active in catalyzing the hydration of nitriles to amides. The chloro analogue (eta(5)-C(9)H(7))Ru(dppm)Cl was, however, found to be inactive. Density functional theory calculations at the B3LYP level provide explanations for the effectiveness of the hydride complex and the ineffectiveness of the chloro complex in the catalysis. It is learned that the presence of a Ru-H.H-OH dihydrogen-bonding interaction in the transition state lowers the reaction barrier in the case of (eta(5)-C(9)H(7))Ru(dppm)H, but in the chloro system, the corresponding transition state does not contain this type of interaction and the reaction barrier is much higher. A similar dihydrogen-bond-promoting effect is believed to be responsible for the catalytic activity of the hydrotris(pyrazolyl)borato (Tp) ruthenium complex TpRu(PPh(3))(CH(3)CN)H in CH(3)CN hydration. The chloro analogue TpRu(PPh(3))(CH(3)CN)Cl shows no catalytic activity.  相似文献   

16.
The monocarbon carborane [Cs][nido-7-CB(10)H(13)] reacts with the 16-electron [RuCl(2)(PPh(3))(3)] in a solution of benzene/methanol in the presence of N,N,N',N'-tetramethylnaphthalene-1,8-diamine as the base to give a series of 12-vertex monocarbon arene-biruthenacarborane complexes of two types: [closo-2-[7,11-exo-RuClPPh(3)(mu,eta(6)-C(6)H(5)PPh(2))]-7,11-(mu-H)(2)-2,1-RuCB(10)H(8)R] (5, R = H; 6, R = 6-MeO; 7, R = 3-MeO) and [closo-2-(eta(6)-C(6)H(6))-10,11,12-[exo-RuCl(PPh(3))(2)]-10,11,12-(mu-H)(3)-2,1-RuCB(10)H(7)R(1)] (8a, R(1) = 6-MeO; 8b, R(1) = 3-MeO, inseparable mixture of isomers) along with trace amounts of 10-vertex mononuclear hypercloso/isocloso-type complexes [2,2-(PPh(3))(2)-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(7)] (9) and [2,5-(Ph(3)P)-2-Cl-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(6)] (10). Binuclear ruthenacarborane clusters of both series were characterized by a combination of analytical and multinuclear NMR spectroscopic data and by single-crystal X-ray diffraction studies of three selected complexes, 6-8. In solution, isomers 8a,b have been shown to undergo the isomerization process through the scrambling of the exo-[RuCl(PPh(3))(2)] fragment about two adjacent triangular cage boron faces B(7)B(11)B(12) and B(8)B(9)B(12).  相似文献   

17.
The rhenacarborane salt Cs[Re(CO)3(eta5-7,8-C2B9H11)] (1) has been used to synthesize the tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Ph2P(CH2)2PPh2]] (3) where two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments have been shown by X-ray crystallography to be bridged by a single 1,2-bis(diphenylphosphino)ethane ligand. Reaction of 1 with Ag[BF4] in the presence of the ligands bis- or tris(pyrazol-1-yl)methane yields the complexes [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-CH2(C3H3N2-1)2]] (4) or [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-kappa1,kappa2-CH(C3H3N2-1)3]] (5), respectively. From X-ray studies, the former comprises a Re-Ag bond bridged by the carborane cage and with the bis(pyrazol-1-yl)methane coordinating the silver(I) center in an asymmetric kappa(2) mode. Complex 5 was unexpectedly found to contain a tris(pyrazol-1-yl)methane bridging two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments in a kappa1,kappa2 manner. Treatment of 1 with Ag[BF4] in the presence of 2,2'-dipyridyl and 2,2':6',2' '-terpyridyl yields [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-(C5H4N-2)(2)]] (6) and [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa3-C5H3N(C5H4N-2)2-2,6]] (7). The X-ray structure determination of 7 revealed an unusual pentacoordinated silver(I) center, asymmetrically ligated by a kappa3-2,2':6',2' '-terpyridyl molecule. The same synthetic procedure using N,N,N',N'-tetramethylethylenediamine gave a tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Me2N(CH2)2NMe2]2] (8) which is believed, in the solid state, to be bridged between the silver atoms by two of the diamine molecules. The salt 1 with Ag[BF4] in the absence of any added ligand gave the tetrameric cluster [ReAg[mu-5,6,10-(H)3-eta5-7,8-C2B9H8](CO)3]4 (9) where, in the solid state, four [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] units are held together by long interunit B-H right harpoon-up Ag bonds.  相似文献   

18.
Neutral and cationic mononuclear complexes containing both group 15 and polypyridyl ligands [Ru(kappa3-tptz)(PPh3)Cl2] [1; tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], [Ru(kappa3-tptz)(kappa2-dppm)Cl]BF4 [2; dppm=bis(diphenylphosphino)methane], [Ru(kappa3-tptz)(PPh3)(pa)]Cl (3; pa=phenylalanine), [Ru(kappa3-tptz)(PPh3)(dtc)]Cl (4; dtc=diethyldithiocarbamate), [Ru(kappa3-tptz)(PPh3)(SCN)2] (5) and [Ru(kappa3-tptz)(PPh3)(N3)2] (6) have been synthesized. Complex 1 has been used as a metalloligand in the synthesis of homo- and heterodinuclear complexes [Cl2(PPh3)Ru(micro-tptz)Ru(eta6-C6H6)Cl]BF4 (7), [Cl2(PPh3)Ru(mu-tptz)Ru(eta6-C10H14)Cl]PF6 (8), and [Cl2(PPh3)Ru(micro-tptz)Rh(eta5-C5Me5)Cl]BF4 (9). Complexes 7-9 present examples of homo- and heterodinuclear complexes in which a typical organometallic moiety [(eta6-C6H6)RuCl]+, [(eta6-C10H14)RuCl]+, or [(eta5-C5Me5)RhCl]+ is bonded to a ruthenium(II) polypyridine moiety. The complexes have been fully characterized by elemental analyses, fast-atom-bombardment mass spectroscopy, NMR (1H and 31P), and electronic spectral studies. Molecular structures of 1-3, 8, and 9 have been determined by single-crystal X-ray diffraction analyses. Complex 1 functions as a good precursor in the synthesis of other ruthenium(II) complexes and as a metalloligand. All of the complexes under study exhibit inhibitory effects on the Topoisomerase II-DNA activity of filarial parasite Setaria cervi and beta-hematin/hemozoin formation in the presence of Plasmodium yoelii lysate.  相似文献   

19.
Reactions of [MCl2(L-L)], M = Pt, Pd; L-L = bis(diphenylphosphino)methane (dppm) or bis(diphenylphosphino)ethane (dppe), with NaC5H4SN in a 1 : 2 molar ratio lead to mononuclear species [M(S-C5H4SN)2(P-P)], M = Pt; L-L = dppm (1) or dppe (2) and M = Pd; L-L = dppe (3), as well as to the dinuclear [Pd2(micro2-S,N-C5H4SN)(micro2-kappa2S-C5H4SN)(micro2-dppm)(S-C5H4SN)2] (4). In contrast, reaction of [MCl2(dppm)] with NaC5H4SN in a 1 : 1 molar ratio leads to [Pd2(micro2-S,N-C5H4SN)3(micro2-dppm)]Cl (5) and trans-[Pt(S-C5H4SN)2(PPh2Me)2] (6) respectively. The latter is formed in low yield by cleavage of the dppm ligand. The dinuclear derivatives 4 and 5 present an A-frame and lantern structure, respectively. The former showing three different co-ordination modes in the same molecule with a short Pd-Pd distance of 2.9583 (9) A and the latter with three bridging S,N thionate ligands showing a shorter Pd-Pd distance of 2.7291 (13) A. Both distances could be imposed by the bridging ligands or point to some sort of metal-metal interaction.  相似文献   

20.
The reagent [arachno-4-CB8H14] reacts with [Fe3(CO)12] in tetrahydrofuran (THF) at reflux temperatures, followed by addition of [N(PPh3)2]Cl, to afford [N(PPh3)2][4,9-{Fe(CO)4}-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (3). In the anion of 3, one iron atom is part of the open CBBFeBB face of a 10-vertex {arachno-9,6-FeCB8} cage, to which the second iron atom is attached via an Fe-Fe bond and an additional exo-polyhedral Fe-B sigma bond. Upon heating 3 in refluxing toluene, the closed 10-vertex species [N(PPh3)2][2,2,2-(CO)3-closo-2,1-FeCB8H9] (4) is obtained, whereas the isomeric compound [N(PPh3)2][6,6,6-(CO)3-closo-6,1-FeCB8H9] (5) is isolated upon heating [closo-4-CB8H9]- and [Fe3(CO)12] in refluxing THF with subsequent addition of [N(PPh3)2]Cl. Protonation of 3 using CF3SO3H in CH2Cl2 gives the charge-compensated compound [4,9-{Fe(CO)4}-4-(mu-H)-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (6), in which the B-Fe sigma bond of the precursor has been converted to a B-H right harpoon-up Fe linkage. In contrast, 3 with {M(PPh3)}+ gives the trimetallic species [1,3,4,9-{MFe(CO)4(PPh3)}-1,3-(mu-H)2-9,9,9-(CO)3-arachno-9,6-FeCB8H9] (M = Cu (7), Ag 8) in which the three metal centers form a V-shaped M-Fe-Fe unit. Compound 6 reacts with PEt3 in the presence of Me(3)NO to yield [4,9-(PEt3)2-9,9-(CO)2-nido-9,6-FeCB8H10] (9). In the latter, the formerly exo-polyhedral {Fe(CO)4} fragment has been replaced by a PEt3 ligand, with a second PEt3 substituting one CO group at the remaining cluster iron vertex. The novel structural features of compounds 3-9 have been confirmed by single-crystal X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号