首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoluminescence (PL) spectra of GaS0.75Se0.25 layered single crystals have been studied in the wavelength region of 500‐850 nm and in the temperature range of 10‐200 K. Two PL bands centered at 527 ( 2.353 eV, A‐band) and 658 nm (1.884 eV, B‐band) were observed at T = 10 K. Variations of both bands have been studied as a function of excitation laser intensity in the range from 8 × 10‐3 to 10.7 W cm‐2. These bands are attributed to recombination of charge carriers through donor‐acceptor pairs located in the band gap. Radiative transitions from shallow donor levels located 0.043 and 0.064 eV below the bottom of conduction band to acceptor levels located 0.088 and 0.536 eV above the top of the valence band are suggested to be responsible for the observed A‐ and B‐bands in the PL spectra, respectively.  相似文献   

2.
Photoluminescence spectra of Tl4GaIn3S8 layered crystals grown by Bridgman method have been studied in the wavelength region of 500–780 nm and in the temperature range of 26–130 K with extrinsic excitation source (λexc = 532 nm), and at T = 26 K with intrinsic excitation source (λexc = 406 nm). Three emission bands A, B and C centered at 514 nm (2.41 eV), 588 nm (2.11 eV) and 686 nm (1.81 eV), respectively, were observed for extrinsic excitation process. Variations in emission spectra have been studied as a function of excitation laser intensity in the 0.9‐183.0 mW cm–2 range for extrinsic excitation at T = 26 and 50 K. Radiative transitions from the donor levels located at 0.03 and 0.01 eV below the bottom of the conduction band to the acceptor levels located at 0.81 and 0.19 eV above the top of the valence band were proposed to be responsible for the observed A‐ and C‐bands. The anomalous temperature dependence of the B‐band peak energy was explained by configurational coordinate model. From X‐ray powder diffraction and energy dispersive spectroscopic analysis, the monoclinic unit cell parameters and compositional parameters of Tl4GaIn3S8 crystals were determined, respectively. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Photolimuniscence (PL) spectra of TlGaS2 layered crystals were studied in the wavelength region 500‐1400 nm and in the temperature range 15‐115 K. We observed three broad bands centered at 568 nm (A‐band), 718 nm (B‐band) and 1102 nm (C‐band) in the PL spectrum. The observed bands have half‐widths of 0.221, 0.258 and 0.067 eV for A‐, B‐, and C‐bands, respectively. The increase of the emission band half‐width, the blue shift of the emission band peak energy and the quenching of the PL with increasing temperature are explained using the configuration coordinate model. We have also studied the variations of emission band intensity versus excitation laser intensity in the range from 0.4 to 19.5 W cm‐2. The proposed energy‐level diagram allows us to interpret the recombination processes in TlGaS2 crystals. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Systematic dark electrical resistivity and Hall mobility measurements have been carried out in the temperature range 150‐400 K on n‐type GaS0.5Se0.5 layered crystals. The analysis of temperature dependent electrical resistivity and carrier concentration reveals the extrinsic type of conduction with a donor impurity level located at 0.44 eV, donor and acceptor concentrations of 3.4 ×1017 and 4.1×1016 cm‐3, respectively, and an electron effective mass of 0.41 m0. The Hall mobility is limited by the electron‐phonon short‐range interactions scattering at high temperatures combined with the ionized impurity scattering at low temperatures. The electron‐phonon short‐range interactions scattering mobility analysis reveals an electron‐phonon coupling constant of 0.25 and conduction band deformation potential of 5.57 eV/Å.  相似文献   

5.
Colorless transparent prismatic crystals (0.5‐2.0 mm long) and hopper crystals (1.0‐2.5 mm long) of GaN were prepared by heating a Ga melt at 800°C in Na vapor under N2 pressures of 7.0 MPa for 300 h. The photoluminescence (PL) spectrum of a prismatic crystal at 4 K showed the emission peaks of neutral donor‐bound exciton (D0‐X) and free exciton (XA) at 3.472 eV and 3.478 eV, respectively, in the near band edge region. The full‐width at half‐maximum (FWHM) of (D0‐X) peak was 1.9 meV. The emission peaks of a donor–acceptor pair transition (D0‐A0) and its phonon replicas were observed in a lower energy range (2.9‐3.3 eV). The emission peaks of the D0‐A0 and phonon replicas were also observed in the cathodoluminescence (CL) spectrum at 20 K. The (D0‐X) PL peak of a hopper crystal at 4 K was at 3.474 eV (2.1 meV higher), having a FWHM of 6.1 meV which was over 3 times larger than that of the prismatic crystal. A strong broad band with a maximum intensity around 1.96 eV was observed for the hopper crystals in the CL spectrum at room temperature. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The optical properties of the Ga0.75In0.25Se crystals have been investigated by means of transmission and reflection measurements in the wavelength range of 380–1100 nm. The analysis of the results performed at room temperature revealed the presence of optical indirect transtions with band gap energy of 1.89 eV. The variation of the band gap energy as a function of temperature was also studied in the temperature range of 10–300 K. The rate of change of band gap energy (γ = –6.2 × 10–4 eV/K) and absolute zero value of the band gap (Egi(0) = 2.01 eV) were reported. The wavelength dependence of the refractive index was analyzed using Wemple and DiDomenico, Sellmeier and Cauchy models to find the oscillator energy, dispersion energy, oscillator strength and zero‐frequency refractive index values. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The optical properties of Tl2InGaSe4 layered single crystals have been studied through the transmission and reflection measurements in the wavelength range of 500‐1100 nm. The analysis of room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 1.86 and 2.05 eV, respectively. Transmission measurements carried out in the temperature range of 10‐300 K revealed that the rate of change of the indirect band gap with temperature is γ = – 4.4 × 10‐4 eV/K. The absolute zero value of the band gap energy was obtained as Egi(0) = 1.95 eV. The dispersion of the refractive index is discussed in terms of the single oscillator model. The refractive index dispersion parameters: oscillator wavelength and strength were found to be 2.53 × 10–7 m and 9.64 × 1013 m–2, respectively. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The optical properties of the TlInS2xSe2(1‐x)mixed crystals (0.25 ≤ x ≤ 1) have been investigated through the transmission and reflection measurements in the wavelength range of 400–1100 nm. The optical indirect band gap energies were determined by means of the analysis of the absorption data. It was found that the energy band gaps decrease with the increase of selenium atoms content in the TlInS2xSe2(1‐x)mixed crystals. The transmission measurements carried out in the temperature range of 10–300 K revealed that the rates of change of the indirect band gaps with temperature are γ = –9.2×10–4 eV/K, –6.1×10–4 eV/K, –4.7×10–4 eV/K and –5.6×10–4 eV/K for TlInS2, TlInS1.5Se0.5, TlInSSe and TlInS0.5Se1.5 crystals, respectively. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The conductivity, mobility, photoconductivity and photo response measurements in GaS0.75Se0.25 mixed crystals were carried out in the temperature range of 150‐450 K. The room temperature conductivity, mobility and electron concentration values were 10‐9 (Ω‐cm)‐1, 48 cm2V‐1s‐1 and ∼109 cm‐3, respectively. Two donor levels were obtained from temperature‐dependent conductivity and carrier concentration, located at energies of about 755 and 465 meV below the conduction band. Single donor‐single acceptor analysis yields the same donor level at 465 meV with donor and acceptor concentrations of 8.7 × 1014 and 5.3 × 1013 cm‐3, respectively. The mobility‐temperature dependence shows that ionized impurity scattering dominates the conduction up to the temperature 310 K with different temperature exponent, while above this critical temperature; the phonon scattering is dominant conduction mechanism. From the photo‐response spectra, the maximum photocurrent was observed for all the samples at 2.42 eV, and varied slightly with temperature. Moreover, the photocurrent‐light intensity dependence in these crystals obeys the power law, Iphϕγ with γ between 1.7 and 2.0 for various applied fields and temperatures. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The optical properties of Tl2In2S3Se layered single crystals have been studied by means of transmission and reflection measurements in the wavelength range of 450‐1100 nm. The analysis of the absorption data revealed the presence of both optical indirect and direct transitions with energy band gaps of 2.16 and 2.42 eV, respectively. The observed coexistence of indirect and direct energy band gaps is related to the anisotropy of the Tl‐containing layered crystals. The dispersion of the refractive index is discussed in terms of the Wemple‐DiDomenico single‐effective‐oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero‐frequency refractive index were found to be 4.78 eV, 43.58 eV, 13.18 × 1013 m–2 and 3.18, respectively. From X‐ray powder diffraction study, the parameters of monoclinic unit cell were determined. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Single crystals of L‐Arginine Fluoride (LAF) have been grown by the slow evaporation technique, and the crystalline perfection was studied by HRXRD. Optical absorption studies reveal the lower cut off wavelength (280 nm) and the band gap (5.1 eV). The dielectric constant and dielectric loss have been measured as a function of frequency (42 Hz–5 MHz) and temperature (307‐368K) and the activation energy is 77 μeV. The thermal transport properties such as thermal conductivity (0.88 ± 0.02 W/mK) and specific heat capacity (482±24 J/kg/K) have been estimated by the photopyroelectric technique. The nonlinear refractive index n2, is found to be of the order of 10−13 cm2/W by the Z‐scan technique.  相似文献   

12.
To investigate the energy levels, absorption bands, band gap, dominant transport mechanisms, recombination mechanisms and the free carrier life time behavior of poly‐dibenzo‐18‐crown‐6, poly‐DB18C6, films, the dark electrical conductivity in the temperature range of 200‐550 K, the absorbance and photocurrent spectra, the photocurrent –illumination intensity and time dependence at 300 K were studied. The dark electrical conductivity measurements revealed the existence of three energy levels located at 0.93, 0.32 and 0.76 eV below the tails of the conduction band. The main transport mechanism in the dark was found to be due to the thermal excitation of charge carriers and the variable range hopping above and below 260 K, respectively. The photocurrent and absorbance spectra reflect a band gap of 3.9 eV. The photocurrent ‐illumination intensity dependence reflects the sublinear, linear and supralinear characters indicating the decrease, remaining constant and increase in the free electron life time that in turn show the bimolecular, strong and very strong recombination characters at the surface under the application of low, moderate and high illumination intensity, respectively. A response time of 25.6 s was calculated from the decay of Iph‐time dependence. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Sb2S3 amorphous thin films were prepared by thermal evaporation of corresponding powder on thoroughly cleaned glass substrates held at temperature in the range 300‐473 K. X‐ray diffraction and atomic force microscopy have been used to order to identify the structure and morphology of surface thin films. The optical constants of the deposition films were obtained from the analysis of the experimental recorded transmission data over the wavelength range 400‐1400 nm. An analysis of the absorption coefficient values revealed an optical indirect transition with the estimation of the corresponding band gap values. It was found that the optical band gap energy decrease with substrate temperature from 1.67 eV at 300 K to 1.48 eV at 473K. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
A new class of polyacetylene was synthesized via the cyclopolymerization of 4,10-bis(diethyl malonate)-1,6,11-dodecatriyne by using MoCl5-EtAlCl2 catalyst system. The polymerization proceeded in mild homogeneous manner to give 32% yield of polymer. The chemical structure of resulting polymer was characterized by NMR (1H-, 13C-), IR, and UV-visible spectroscopies to have a conjugated backbone system. The polymer showed characteristic wide UV-visible absorption band and PL maximum peak at 530 nm corresponding to the photon energy of 2.34 eV. The cyclic voltammogram of polymer showed the stable electrochemical window in the range of of ?1.50V to +1.50V. From the CV measurements, the HOMO energy level of the polymer was calculated to be 5.55 eV.  相似文献   

15.
To identify the impurity levels in CuIn5S8 single crystals, the dark electrical conductivity and photoconductivity measurements were carried out in the temperature range of 50–460 K. The data reflect the intrinsic and extrinsic nature of the crystals above and below 300 K, respectively. Energy band gaps of 1.35 and 1.31 eV at 0 K and 300 K, were defined from the dark conductivity measurements and the photocurrent spectra, respectively. The dark and photoconductivity data in the extrinsic temperature region reflect the existence of two independent donor energy levels located at 130 and 16 meV. The photocurrent‐illumination intensity dependence (F) follows the law IphαFγ, with γ being 1.0, 0.5 and 1.0 at low, moderate and high intensities indicating the domination of monomolecular, bimolecular and strong recombination at the surface, respectively. In the intrinsic region and in the temperature region where the shallow donor energy level 16 meV is dominant, the free electron life time, τn, is found to be constant with increasing F. In the temperature region 140 K < T < 210 K, the free electron life time increases with increasing illumination intensity showing the supralinear character. Below 140 K, τn decrease with decreasing illumination intensity. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
CdSe:In films were prepared by electron beam evaporation technique using CdSe and In2Se3 (purity ∼99.9%) pellets. The crystal structure of the films with and without Indium, measured by X‐ray diffraction (XRD), showed a typical wurtzite structure, higher Indium doping shifts the peak angle to higher side along with the broadening of the peaks. X‐ray photoelectron spectroscopy (XPS) studies indicated binding energies corresponding to 54 eV (Se3d5/2), 444 eV (In 3d5/2), 411 eV (Cd 3d3/2), (Cd 3d5/2). Atomic force microscope (AFM) studies indicated a uniform surface.The grain size decreases with increase of In doping. A decrease in the band gap was observed with increase of dopant concentration. Resistivity of the films is in the range of 10‐3 Ωcm. Carrier density was in the range of 1021 cm‐3 for the films. The photolumineasenec spectra (PL) spectra indicated three peaks. The peak intensity decreases as the Indium concentration increases. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Semiorganic tris thiourea copper (I) chloride (TTCC) single crystals have been synthesized from copper (II) chloride via slow evaporation technique. The stoichiometry of the grown anhydrous complex crystal has been confirmed by elemental CHNS (C, H, N and S) and atomic absorption spectrophotometric (AAS) analysis. The crystal structure with space group has been confirmed by single crystal and powder X‐ray diffraction (XRD) studies. The FTIR study assigned the presence of functional groups and confirmed the co‐ordination of metal ions with thiourea. It also confirmed the transition from Cu2+ to Cu+ when thiourea combined with Copper (II) chloride. The optical transparency of the crystal has been studied by UV‐Vis spectrum and deduced the energy gap. The room temperature Photoluminescence (PL) spectrum reported maximum emission line at 410.92 nm and Stokes shift has been determined as 75 nm or 16.5 eV. Low temperature luminescence study from 300 K to 77 K exhibited three blue emission peaks and one green emission peak. The green emission band has been assigned to recombination of an electron in a shallow trap and Cu2+. Blue emission has been attributed to S2‐ vacancies. The interesting hysteresis loop has been exhibited by the variation of energy gap with low temperature. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
《Journal of Non》2007,353(13-15):1330-1332
We have studied the absorption and photoluminescence (PL) of (GeS2)80(Ga2S3)20 glasses doped with 0.17, 0.35 and 1.05 at.% Er. The sharp bands centered at around 660, 810, 980 and 1540 nm in the absorption spectra can be associated with intra 4f-shell transitions in Er3+ ions from 4I15/2 level to 4F9/2, 4I9/2, 4I11/2 and 4I13/2 levels, respectively. It has been observed that the absorption edge shifts towards lower energies with increasing Er concentration. A decrease in the absorption coefficient in the range of weak absorption, as well as the host luminescence in more heavily doped samples has been established, which may be associated with less native defects in the glassy structure. The role of excitation wavelength (λex) on the PL emission band at 1540 nm using different Er3+-doping level has been evaluated. It has been found that the total PL band remains almost the same under direct excitation of Er3+ ions (at λex = 644, 770 and 982 nm), while it becomes narrower under the host excitation (at λex = 532 nm).  相似文献   

19.
Mg‐doped ZnO (MgxZn1‐xO) nanoparticles with precise stoichiometry are synthesized through polyacrylamide polymer method. Calcination of the polymer precursor at 650 °C gives particles of the homogeneous solid solution of the (MgxZn1‐xO) system in the composition range (x < 0.15). ZnO doping with Mg causes shrinkage of lattice parameter c. The synthesized MgxZn1‐xO nanoparticles are typically with the diameter of 70–85 nm. Blue shift of band gap with the Mg‐content is demonstrated, and photoluminescence (PL) from ZnO has been found to be tunable in a wide range from green to blue through Mg doping. The blue‐related PL therefore appeared to be caused by energetic shifts of the valence band and/or the conduction band of ZnO. MgxZn1‐xO nanoparticles synthesized by polyacrylamide‐gel method after modified by polyethylene glycol surfactant have a remarkable improvement of stability in the ethanol solvent, indicating that these MZO nanoparticles could be considered as the candidate for the application of solution–processed technologies for optoelectronics at ambient temperature conditions.  相似文献   

20.
The photo‐excitation effect on the current transport mechanism in TlInS2 crystals has been studied by means of dark and illuminated conductivity measurements. The temperature‐dependent electrical conductivity analysis in the temperature region of 110‐340 K revealed the domination of the thermionic emission and the thermally assisted variable range hopping (VRH) of charge carriers above and below 160 K, respectively. Above 160 K, the conductivity activation energies in the dark are found to be 0.28 and 0.15 eV in the temperature regions of 340‐240 K and 230‐160 K, respectively. In the temperature region of 110‐150 K, the dark variable range hopping analysis revealed a density of localized states of 1.99×1022 cm–3eV–1, an average hopping distance of 0.53 nm and an average hopping energy of 79.65 meV. When the sample was photo‐excited, the values of the conductivity activation energies, the density of localized states near the Fermi level and the average hopping energy were observed to decrease sharply with increasing illumination intensity. On the other hand, the average hopping distance increased with rising illumination intensity. Such behaviours were attributed to the Fermi level shift and/or trap density reduction by electron‐hole recombination. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号