首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A neodymium doped Ca5(BO3)3F single crystal with size up to 51×48×8 mm3 has been grown by the top seeded solution growth (TSSG) technique with a Li2O‐B2O3‐LiF flux. The spectra of absorption and fluorescence were measured at room temperature. According to Judd‐Ofelt (J‐O) theory, the spectroscopic parameters were calculated and the J‐O parameters Ω2, Ω4, Ω6 were obtained as follows: Ω2 = 1.41×10−20cm2, Ω4 = 3.18×10−20cm2, Ω6 = 2.11×10−20cm2. The room temperature fluorescence lifetime of NCBF was measured to be 51.8 μs. According to the J‐O paramenters, the emission probabilities of transitions, branching ratios, the radiative lifetime and the quantum efficiency from the Nd3+ 4F3/2 metastable state to lower lying J manifolds were also obtained. In comparasion with other Nd‐doped borate crystals, the calculated and experimental parameters show that NCBF is a promising SFD crystal.  相似文献   

2.
This paper reports crystal growth and optical characteristics of dysprosium (Dy3+) and erbium (Er3+) doped mid‐infrared laser crystal ternary‐potassium‐lead‐chloride (KPb2Cl5). Two transparent crystals with good optical quality have been grown successfully by using the Bridgman technique,the largest crystal size reaches up to ∅︁10×60mm2. Measurements of X‐ray diffraction(XRD) and absorption spectra were carried out. Based on Judd‐Ofelt theory, the intensity parameters Ωt(t=2,4,6), the experimental and theoretical oscillator strengths have been obtained.The intensity parameters Ωt(t=2,4,6) of Er3+:KPb2Cl5 were calculated to be Ω2=5.10×10‐20 cm2, Ω4=1.25×10‐20 cm2, Ω6=0.83×10‐20 cm2, and the values for Dy3+:KPb2Cl5 were calculated to be Ω2=6.26×10‐20 cm2, Ω4=2.45×10‐20 cm2, Ω6=0.04×10‐20 cm2 respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Single crystals of Yb, Nd: KLu(WO4)2 (Yb, Nd: KLW) of dimensions up to 40mm× 40mm×5mm have been grown by top‐seeded solution growth (TSSG) method. X‐ray powder diffraction pattern was measured and compared with that of Nd: KLuW and Yb: KLuW. Absorption and fluorescence spectra were measured at room temperature. The Judd‐Ofelt theory was applied to analyze the spectrum of Nd, Yb: KLuW crystal. The intensity parameters Ωt (t=2, 4 and 6) were calculated as Ω2=20.68×10‐20cm2, Ω4=11.04×10‐20cm2, Ω6=6.74×10‐20cm2 respectively, with a root mean square deviation of 0.58×10‐20 cm2. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Er3+-doped Gd2SiO5 (Er:GSO) single crystal with dimensions of ? 35×40 mm3 has been grown by the Czochralski method. The absorption and fluorescence spectra of the Er:GSO crystal were measured at room temperature. The spectral parameters were calculated based on Judd–Ofelt theory, and the intensity parameters Ω2, Ω4 and Ω6 are obtained to be 6.168×10?20, 1.878×10?20, and 1.255×10?20 cm2, respectively. The emission cross-section has been calculated by Fuechtbauer–Ladenbury formula.  相似文献   

5.
Potassium bismuth tungstate [KBi(WO4)2] single crystals with dimensions up to 20 mm × 15 mm × 15 mm have been successfully grown by using the top‐seeded solution growth technique and K2W2O7 as solvent. Experiments show that this crystal is unstable in a strong acid or alkali environment and has a blue fluorescence emission. The density, hardness, melting point, absorption edge, transparency range, prominent Raman shift frequency are 7.57 g/cm3, 238 kg/mm2, 800 °C, 380 nm, 400–5450 nm, 868 cm–1 respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Codoped Hf: Er: LiNbO3 crystals have been grown by the Czochralski technique. Defect structures of the crystals were analyzed by IR absorption spectra, and the compositions of the crystals were measured by X‐ray fluorescent spectrograph. A new OH‐associated vibrational peak at 3492 cm–1 was revealed in 6 mol % Hf: 1 mol % Er: LiNbO3 crystal. It was attributed to (HfNb)‐OH‐(ErNb)2– defect centers. The Er3+ concentrations in crystals gradually decreased with the increase of the codoped Hf4+ concentrations in the melts. The emission characteristics of the crystals were investigated by the fluorescence spectrum. It was found that the luminescent intensity in codoped 6 mol % Hf: 1 mol % Er: LiNbO3 crystal was 3.5 times stronger than that in single doped 1 mol % Er: LiNbO3 crystal. The luminescent enhancement effect was successfully explained on the basis of defect structure of the crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In this paper, [NaGd1‐xNdx](MoO4)2 crystals with x = 0.005–0.05 were grown by Czochralski method at 950 ℃ for 10 hours and subsequently characterized by absorption spectroscopy and fluorescence spectroscopy. The intensity parameters of Nd3+ were calculated by Judd‐Ofelt theory, and the relationship between the parameters and Nd3+ concentration was analyzed. The results show that with the increasing Nd3+ concentration, the oscillator strength, stimulated emission cross‐section, Ωt and spontaneous transition probability decrease slightly, while the fluorescence lifetime decreases significantly. However, the fluorescence branching ratio is almost unchanged with the increasing Nd3+concentration. The [NaGd1‐xNdx](MoO4)2 crystal with (x = 0.01) possesses the highest quantum efficiency of 88.98%, a good fluorescence line‐width of 23 nm, a large value of σem·τf up to 0.55 × 10−22 cm2·s and a stimulated emission cross‐section up to 3.747 × 10−19 cm2 for the transition from 4F3/2 to4I11/2 at 1064 nm. Test results indicate that [NaGd1‐xNdx](MoO4)2 crystals are an excellent gain media for the solid state laser system.  相似文献   

8.
Ca4YO(BO3)3 (YCOB) crystals have been grown using the vertical Bridgman method. The thermal properties of YCOB were measured for the first time to our knowledge. The specific heat is 729.7 J/kg K at 373K. The average thermal expansion coefficients along the a, b and c axes are 9.9 × 10‐6 /K, 8.2 × 10‐6 /K and 12.8 × 10‐6 /K, respectively, in the temperature range of 293‐1173 K. The thermal conductivities along the a, b and c axes are 1.83 W/mK, 1.72 W/mK and 2.17 W/mK at 373 K. The anisotropy in the measured thermal conductivities of YCOB is consistent with the experimental results of the thermal expansion. The SHG of a Nd: YAG laser was compared with that of a KDP crystal. The effective nonlinear coefficients (deff) of YCOB in type I phase matching directions of (θ, ϕ) = (66.3°, 143.5°) and (65.9°, 36.5°) were estimated to be 1.45 pm/V and 0.91 pm/V, respectively. The bulk damage threshold was observed as 85 GW/cm2 for single pulse of a Nd:YAG laser with 10 ns pulseduration.  相似文献   

9.
A series of neodymium complexes Nd(TTA)3Lx (where TTA = α-thenoyltrifluoroacetonato, Lx (x = 1–5) = H2O, triophenylphosphine oxide (Tppo), 2,2-bipyridine (Bipy), 1,10-phenanthroline (Phen) and 2- (N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (Dpbt) were synthesized and incorporated in poly(methyl methacrylate). Their absorption spectra were measured and analyzed using Judd–Ofelt theory. Near-infrared luminescent spectra were studied and the radiative properties have been stimulated. Laser parameters such as effective bandwidths (Δλeff), stimulated emission cross-sections (σe), and gain bandwidth (σg) had also been calculated and compared with other systems. The effect on the fluorescence branching ratio (β) in the 4F3/24I11/2 transition of different synergistic ligands had been investigated and the relation between β and Judd–Ofelt parameter Ω2, Ω4, Ω6 was discussed. In conclusion, among the five neodymium complexes, Nd(TTA)3Dpbt has the largest Ω2 parameter (33.72 × 10? 20 cm2), stimulated emission cross-sections, which is found promising to be a candidate for laser materials in further application.  相似文献   

10.
Upon excitation at 808 nm laser diode, an intense 1.47 μm infrared fluorescence has been observed with a broad full width at half maximum (FWHM) of about 124 nm for the Tm3+-doped TeO2-K2O-La2O3 glass. The Judd–Ofelt parameters found for this glass are: Ω2 = 5.26 × 10?20 cm2, Ω4 = 1.57 × 10?20 cm2 and Ω6 = 1.44 × 10?20 cm2. The calculated emission cross-sections of the 1.47 μm transition are 3.57 × 10?21 cm2, respectively. It is noted that the gain bandwidth, σe × FWHM, of the glass is about 440 × 10?28 cm3, which is significantly higher than that in ZBLAN and Gallate glasses, a high gain of 35.5 dB at 1470 nm can be obtained in a TKL glass fiber. TeO2-R2O (R = Li, Na, K)-La2O3 glasses has been considered to be more useful as a host for broadband optical fiber amplifier.  相似文献   

11.
We report the optical properties of a fluorochlorozirconate (FCZ) glass with the composition 53% ZrF4, 20% NaF, 3.5% AlF3, 3% LaF3, 0.5% InF3, (20 ? x)% BaCl2, x% BaF2 with x varying from 0% to 2%, and doped with various amounts of trivalent erbium by the addition of ErCl3. Annealing of the as-prepared glass in inert (N2) or reducing (5%H2 + 95%Ar) atmospheres at temperatures that ensure the conversion of the glass into a glass-ceramic by the nucleation of BaCl2 nanocrystals, does not significantly change any of Er3+ related absorption and photoluminescence (PL) characteristics. We have carried out a Judd–Ofelt analysis of the absorption spectra and obtained Ω2 = (1.92 ± 0.3) × 10? 20 cm2, Ω4 = (0.88 ± 0.16) × 10? 20 cm2 and Ω6 = (0.59 ± 0.08) × 10? 20 cm2, and also the radiative lifetimes of the 4I13/24I15/2, 4I11/24I15/2 and 4S3/24I15/2 bands. The radiative lifetime from the Judd–Ofelt analysis for the 4I13/24I15/2 band is in good agreement with the experimentally measured PL decay time. The examination of the optical properties of powdered samples with different average particle size does not show any photon trapping effects. We have determined the spectral absorption and emission cross-sections and then estimated the possible spectral optical gain for varying degrees of relative populations of the 4I13/2 and 4I15/2 manifolds.  相似文献   

12.
《Journal of Non》2005,351(43-45):3468-3475
Luminescence properties and upconversion studies of germanate glasses in ternary GeO2–PbO–Bi2O3 and binary GeO2–Bi2O3 systems containing Er2O3 (0.1–1.0 wt%) are presented for the first time. The Judd-Ofelt parameters found for these glasses are: Ω2 = 4.50 × 10−20 cm2, Ω4 = 1.55 × 10−20 cm2 and Ω6 = 0.69 × 10−20 cm2 for binary glasses and Ω2 = 4.44 × 10−20 cm2, Ω4 = 1.82 × 10−20 cm2 and Ω6 = 0.39 × 10−20 cm2 for ternary glasses. The refractive index of these glasses is found to be ∼2. The transition 4I13/2  4I15/2 is peaked at ∼1.53 μm and shows a radiative lifetime around 5 ms. Both systems exhibit similar emission cross-section at 1.53 μm around 0.8 × 10−20 cm2. Upconverted green emission at ∼530 nm (2H11/2  4I15/2) and ∼550 nm (4S3/2  4I15/2) and red emission at ∼668 nm (4F9/2  4I15/2) are observed under 980 nm cw excitation. Our results suggest that these glasses are promising candidates for applications in photonics.  相似文献   

13.
Single crystals of Sr3NbAl1.5Ga1.5Si2O14 (SNAGS) with langasite structure have been successfully grown by Czochralski method. The X‐ray diffraction (XRD) verified that the as‐grown crystal was isostructural with A3BC3D2O14 structure and the lattice parameters were calculated as follows: a = 8.242 Å, c = 5.041 Å, V = 296.6 Å3. The piezoelectric coefficient d11 was 5.7pC/N, which was 2.47 times of α‐quartz (d11=2.31pC/N). The electric resistivity was up to 3.04×106 Ωcm at 700 °C for X‐cut sample. In addition, the transmission spectrum of the SNAGS crystal showed that it had a high transmittance (>80%) in the range of 350‐800 nm and exceeded 90% above 520 nm. These results suggest that the SNAGS crystals have potential applications in high‐temperature piezoelectric sensors and optical techniques. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Electrical conductivity and Hall effect measurements were performed on single crystals of TI2Te3 to have the general semiconducting behaviour of this compound. The measurements were done at the temperature range 160–350 K. All crystals were found to be of p-type conductivity. The values of the Hall coefficient and the electrical conductivity at room temperature were 1.59 × 103 cm3/coul and 3.2 × 10−2 ω−1 cm−1, respectively. The hole concentration at the same temperature was driven as 39.31 × 1011 cm−3. The energy gap was found to be 0.7 eV where the depth of impurity centers was 0.45 eV. The temperature dependence of the mobility is discussed.  相似文献   

15.
The growth morphology of MMTG (manganese mercury thiocyanate glycol monomethyl ether, MnHg(SCN)4(C3H8O2)) crystal was indexed according to the X‐ray powder diffraction spectroscopy. The density and Mohs hardness were determined at room temperature. The specific heat of the crystal is 458.6 J.mol‐1K‐1 at 300 K. The thermal expansion coefficient (TEC) along the a, b and c axis is a1=6.89 × 10‐5 K‐1, a2=6.78 × 10‐5 K‐1 and a3=2.08 × 10‐5 K‐1, respectively. The sameness and difference of the TECs are interpreted on the basis of crystal structure. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A new kind of germanate glass co-doped with Yb3+–Ho3+ was prepared. The J-O parameters were calculated to be Ω2 = (6.59 ± 0.21) × 10? 20 cm2, Ω4 = (2.77 ± 0.36) × 10? 20 cm2, and Ω6 = (1.90 ± 0.25) × 10? 20 cm2. The little overlap between the absorption cross section and stimulated emission cross section indicates a non-resonant energy transfer process. The calculation demonstrates that the energy transfer between Yb3+ and Ho3+ is one-phonon assisted in a great measure. The gain coefficient of Ho3+ at 2.0 μm was also calculated. The fluorescence measurement shows the Yb3+ co-doping enhances the 2.0 μm emission remarkably.  相似文献   

17.
Large and high‐quality single crystals of both Pb‐free and Pb‐doped high temperature superconducting compounds (Bi1‐xPbx)2Sr2Ca2Cu3O10‐y (x = 0 and 0.3) were grown by means of a newly developed “Vapour‐Assisted Travelling Floating Zone” technique (VA‐TSFZ). This modified zone‐melting technique was realised in an image furnace and allowed for the first time to grow Pb‐doped crystals by compensating for the Pb losses occurring at high temperature. Crystals up to 3×2×0.1 mm3 were successfully grown. Post‐annealing under high pressure of O2 (up to 10 MPa at T = 500°C) was undertaken to enhance Tc and improve the homogeneity of the crystals. Structural characterisation was performed by single‐crystal X‐ray diffraction (XRD) and the structure of the 3‐layer Bi‐based superconducting compound was refined for the first time. Structure refinement showed an incommensurate superlattice in the Pb‐free crystals. The space group is orthorhombic, A2aa, with cell parameters a = 27.105(4) Å, b = 5.4133(6) Å and c = 37.009(7) Å. Superconducting studies were carried out by A.C. and D.C. magnetic measurements. Very sharp superconducting transitions were obtained in both kinds of crystals (ΔTc ≤ 1 K). In optimally doped Pb‐free crystals, critical temperatures up to 111 K were measured. Magnetic critical current densities of 2�105 A/cm2 were measured at T = 30 K and μ0H = 0 T. A weak second peak in the magnetisation loops was observed in the temperature range 40‐50 K above which the vortex lattice becomes entangled. We have measured a portion of the irreversibility line (0.1‐5 Tesla) and fitted the expression for the melting of a vortex glass in a 2D fluctuation regime to the experimental data. Measurements of the lower critical field allowed to obtain the dependence of the penetration depth on temperature: the linear dependence of λ(T) for T < 30 K is consistent with d‐wave superconductivity in Bi‐2223. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Efficient infrared emissions at 1.20 μm [5I6  5I8 transition] and 1.38 μm [(5 F4, 5 S2)  5I5 transition] from Ho3+-doped lithium–barium–bismuth–lead (LBBP) glass were observed. The stimulated emission cross-sections were calculated to be 0.29 × 10?20 and 0.25 × 10?20 cm2 for 1.20 and 1.38 μm emissions, respectively. Judd-Ofelt characteristic parameters Ω2, Ω4 and Ω6 for Ho3+ in LBBP glass were calculated to be 6.72 × 10?20, 2.35 × 10?20 and 0.61 × 10?20 cm2, respectively, which indicates a strong asymmetry and a covalent environment between the Ho3+ ions and the ligands in this glass. The optical amplifications operating at these relatively unexplored wavelength regions were evaluated and discussed.  相似文献   

19.
Mg: Er: LiNbO3 crystals were grown by the Czochralski technique with various concentrations of MgO = 2 mol%, 4 mol%, 6 mol% and the fixed concentration of Er2O3= 1 mol% in the melt, and the 8 mol%Mg: 1 mol%Er: LiNbO3 crystal was fabricated by the Czochralski technique with special technology process. The crystals were treated by polarization, reduction and oxidation. The segregation coefficients of Mg2+ and Er3+ in Mg: Er: LiNbO3 crystals were measured by X‐ray fluorescence spectrograph, as well as the crystal's defect structure and optical properties were analyzed by the UV‐Vis, IR and fluorescent spectroscopy. The pump wavelength and the surge wavelength were determined. Using m‐line method tested optical damage resistance of those crystals, the results show that photodamage threshold of Mg: Er: LiNbO3 crystals are higher than that of Er: LiNbO3 crystal, and the oxidation treat could enhance the photodamage resistant ability of crystals while the reduction treat could depress the ability. The optical damage resistance of 8 mol%Mg: 1 mol%Er: LiNbO3 crystal was the strongest among the samples, which was two orders magnitude higher than that of 1 mol%Er: LiNbO3 crystal. The dependence of the optical properties on defect structure of Mg: Er: LiNbO3 crystals was discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Undoped p‐GaSe layered single crystals were grown using Bridgman technique. Thermally stimulated current measurements in the temperature range of 10‐300 K were performed at a heating rate of 0.18 K/s. The analysis of the data revealed three trap levels at 0.02 , 0.10 and 0.26 eV. The calculation for these traps yielded 8.8 × 10‐27, 1.9 × 10‐25, and 3.2 × 10‐21 cm2 for capture cross sections and 3.2 × 1014, 1.1 × 1016, and 1.2 × 1016 cm‐3 for the concentrations, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号