首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Studying the coherent diffractive production of pions in neutrino and antineutrino scattering off the nuclei of freon molecules we have observed for the first time in one experiment all three states of the isospin triplet of the axial part of the weak charged and neutral currents. For the corresponding cross sections we derive $$\begin{array}{*{20}c} {\sigma _{coh}^v (\pi ^ + ) = (106 \pm 16) \cdot 10^{ - 40} {{cm^2 } \mathord{\left/ {\vphantom {{cm^2 } {\left\langle {nucl.} \right\rangle }}} \right. \kern-\nulldelimiterspace} {\left\langle {nucl.} \right\rangle }}} \\ {\sigma _{coh}^{\bar v} (\pi ^ - ) = (113 \pm 35) \cdot 10^{ - 40} {{cm^2 } \mathord{\left/ {\vphantom {{cm^2 } {\left\langle {nucl.} \right\rangle }}} \right. \kern-\nulldelimiterspace} {\left\langle {nucl.} \right\rangle }}and} \\ {\sigma _{coh}^v (\pi ^0 ) = (52 \pm 19) \cdot 10^{ - 40} {{cm^2 } \mathord{\left/ {\vphantom {{cm^2 } {\left\langle {nucl.} \right\rangle }}} \right. \kern-\nulldelimiterspace} {\left\langle {nucl.} \right\rangle }}} \\ \end{array} $$ . Comparing our data with theoretical predictions based on the standard model of weak interactions we find reasonable agreement. Independently from any model of coherent pion production we determine the isovector axial vector coupling constant to be |β|=0.99±0.20.  相似文献   

2.
We systematically exploit the reported data on \(F_2^{\gamma p} ,F_2^{\gamma n} ,\sigma ^{vN} ,\sigma ^{\bar vN} ,\left\langle {xy} \right\rangle _{vN} ,\left\langle {xy} \right\rangle _{\bar vN} ,\left\langle {1 - y} \right\rangle _{vN} \) and \(\left\langle {1 - y} \right\rangle _{\bar vN} \) in order to test various versions of the quark parton model and to obtain further predictions.  相似文献   

3.
Electroweak (EW) and electromagnetic (EM) scattering of solar beryllium neutrinos by electrons are analyzed. An analysis of the influence of the mean-square charge radius of an electron neutrino $ r_{\nu _e } = \sqrt {\left\langle {r_{_{\nu _e } }^2 } \right\rangle } $ r_{\nu _e } = \sqrt {\left\langle {r_{_{\nu _e } }^2 } \right\rangle } on differential and total cross sections is performed. The possibility of measuring the magnetic moment of an electron neutrino (μv) on the basis of isolating its contribution to the section of the discussed processes is considered.  相似文献   

4.
The average multiplicities of charged hadrons and of π+, π? and π0 mesons, produced in \(\bar v\) Ne and νNe charged current interactions in the forward and backward hemispheres of theW ±-nucleon center of mass system, are studied with data from BEBC. The dependence of the multiplicities on the hadronic mass (W) and on the laboratory rapidity (y Lab) and the energy fraction (z) of the pion is also investigated. Special care is taken to determine the π0 multiplicity accurately. The ratio of average π multiplicities \(\frac{{2\left\langle {n_{\pi ^O } } \right\rangle }}{{[\left\langle {n_{\pi ^ + } } \right\rangle + \left\langle {n_{\pi ^ - } } \right\rangle ]}}\) is consistent with 1. In the backward hemisphere \(\left\langle {n_{\pi ^O } } \right\rangle \) is positively correlated with the charged multiplicity. This correlation, as well as differences in multiplicities between \(\mathop v\limits^{( - )} \) and \(\mathop v\limits^{( - )} \) , \(\mathop v\limits^{( - )} \) scattering, is attributed to reinteractions inside the neon nucleus of the hadrons produced in the initial \(\mathop v\limits^{( - )} \) interaction.  相似文献   

5.
Optical NOON states ${{\left( {\left| {\left. {N,0} \right\rangle + } \right|\left. {0,N} \right\rangle } \right)} \mathord{\left/ {\vphantom {{\left( {\left| {\left. {N,0} \right\rangle + } \right|\left. {0,N} \right\rangle } \right)} {\sqrt 2 }}} \right. \kern-\nulldelimiterspace} {\sqrt 2 }}${{\left( {\left| {\left. {N,0} \right\rangle + } \right|\left. {0,N} \right\rangle } \right)} \mathord{\left/ {\vphantom {{\left( {\left| {\left. {N,0} \right\rangle + } \right|\left. {0,N} \right\rangle } \right)} {\sqrt 2 }}} \right. \kern-\nulldelimiterspace} {\sqrt 2 }} are an important resource for Heisenberg-limited metrology and quantum lithography. The only known methods for creating NOON states with arbitrary N via linear optics and projective measurements seem to have a limited range of application due to imperfect phase control. Here, we show that bootstrapping techniques can be used to create high-fidelity NOON states of arbitrary size.  相似文献   

6.
Chengdong Zhou 《中国物理 B》2022,31(3):30301-030301
Expectation values of single electron and interelectronic geometric quantities such as $\langle r\rangle$, $\langle r_{12}\rangle$, $\langle r_<\rangle$, $\langle r_>\rangle$, $\langle \cos\theta_{12}\rangle$ and $\langle \theta_{12}\rangle$ are calculated for doubly excited $2{\rm p}n{\rm p}\,{}^1P^{\,\rm e}\,(3\leq n\leq5),\, 2{\rm p}n{\rm p}\,{}^3\!P^{\,\rm e}\,(2\leq n\leq5)$ and $2{\rm p}n{\rm d}\,{}^{1,3}D^{\,\rm o}\,(3\leq n\leq5)$ states of helium using Hylleraas-$B$-spline basis set. The energy levels converge to at least 10 significant digits in our calculations. The extrapolated values of geometric quantities except for $\langle \theta_{12}\rangle$ reach 10 significant digits as well; $\langle \theta_{12}\rangle$ reaches at least 7 significant digits using a multipole expansion approach. Our results provide a precise reference for future research.  相似文献   

7.
彭朝辉  邹健  邵彬 《中国物理》2007,16(9):2569-2577
We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents in the two rings using the normalized correlation function $C_{\rm AB}$. We show that when the parameter $\alpha$ is very small for the separable state with the density matrix $\hat {\rho } = (\left| {\alpha , - \alpha } \right\rangle \left\langle {\alpha , - \alpha } \right| + \left| { - \alpha ,\alpha } \right\rangle \left\langle { - \alpha ,\alpha } \right|) / 2$ and entangled coherent state (ECS) $\left| u \right\rangle = N_1 (\left| {\alpha , - \alpha } \right\rangle + \left| { - \alpha ,\alpha } \right\rangle )$ fields, the dynamic behaviours of the normalized correlation function $C_{\rm AB}$ are similar, but it is quite different for the entangled coherent state $\left| {u}' \right\rangle = N_2 (\left| {\alpha , - \alpha } \right\rangle - \left| { - \alpha ,\alpha } \right\rangle )$ field. When the parameter $\alpha $ is very large, the dynamic behaviours of $C_{\rm AB}$ are almost the same for the separable state, entangled coherent state $\left| u \right\rangle $ and $\left| {u}' \right\rangle $ fields. For the two-mode squeezed vacuum state field the maximum of $C_{\rm AB}$ increases monotonically with the squeezing parameter $r$, and as $r \to \infty $, $C_{\rm AB} \to 1$. This means that the supercurrents in the two rings A and B are quantum mechanically correlated perfectly. It is concluded that not all the quantum correlations in the two-mode nonclassical state field can be transferred to the supercurrents; and the transfer depends on the state of the two-mode nonclassical state field prepared.  相似文献   

8.
9.
魏益焕 《物理学报》2019,68(6):60402-060402
本文考虑带有黑洞视界和宇宙视界的Kiselev时空.研究以黑洞视界和宇宙视界为边界的系统的热力学性质.统一地给出了两个系统的热力学第一定律;在黑洞视界半径远小于宇宙视界半径的情况下,近似地计算了通过宇宙视界和黑洞视界的热能.然后,探讨Kiselev时空的物质吸积特性.在吸积能量密度正比于背景能量密度的条件下给出黑洞的吸积率,讨论了黑洞吸积率与暗能量态方程参数的关系.  相似文献   

10.
Almost all branching ratios and longitudinal polarization fractions of the double charm decays \(B_{(s)} \to D_{(s)}^{(*)} D_{s}^{(*)}\) have been measured, and the experimental central value of \(f_{L}({B^{0}_{s}}\to D^{*+}_{s}D^{*-}_{s})\) is quite small comparing to its Standard Model prediction. We study the fourth generation quark contributions to the double charm decays \(B_{(s)} \to D_{(s)}^{(*)} D_{s}^{(*)}\). We find that the loop diagrams involving the fourth generation quark t′ have great effects on all branching ratios and CP asymmetries, which are very sensitive to the fourth generation parameter \(\lambda ^{s}_{t^{\prime }}\) and \(\phi _{t^{\prime }}\). Nevertheless, the experimental measurements of all branching ratios can not give effective constraints on relevant new physics parameters. In addition, they have no obvious effect on the relevant polarization fractions. These results could be used to search for the fourth heavy quark t′ via its indirect manifestations in loop diagrams.  相似文献   

11.
We investigate a continuous Ising system on a lattice, equivalently an anharmonic crystal, with interactions: $$\sum\limits_{\left\langle {x,y} \right\rangle } {\left( {\phi _x - \phi _y } \right)} ^2 + \lambda \left( {\phi _x - \phi _y } \right)^4 , \phi _x \in \mathbb{R}, x \in \mathbb{Z}^d .$$ We prove that the perturbation expansion for the free energy and for the correlation functions is asymptotic about λ=0, despite the fact that the reference system (λ=0) does not cluster exponentially. The results can be extended to more general systems of this type, e.g. an even polynomial semibounded from below instead of a quartic interaction. By a suitable scaling, λ corresponds to the temperature.  相似文献   

12.
We present a lattice QCD determination of the chiral quark condensate based on a new method. We extract the quark condensate from the operator product expansion of the quark propagator at short euclidean distances, where it represents the leading contribution in the chiral limit. From this study we obtain , in good agreement with determinations of this quantity based on different approaches. The simulation is performed by using the -improved Wilson action at on a volume 323 × 70 in the quenched approximation.Received: 8 March 2005, Revised: 15 April 2005, Published online: 18 May 2005PACS: 11.15.Ha, 11.30.Rd, 12.38.-t, 12.38.Gc  相似文献   

13.
An approximation procedure for the solution of stochastic nonlinear equations, which was derived from a variational principle in a previous paper, is applied to the problem of a particle that diffuses in a symmetric bistable potential starting from the point of unstable equilibrium. The second moment and variance for the particle's position are calculated as functions of the timet. Good agreement is found with results recently obtained by Baibuzet al. from an approximate evaluation of a path integral expression for the probability density.  相似文献   

14.
If for a relativistic field theory the expectation values of the commutator (Ω|[A (x),A(y)]|Ω) vanish in space-like direction like exp {? const|(x-y 2|α/2#x007D; with α>1 for sufficiently many vectors Ω, it follows thatA(x) is a local field. Or more precisely: For a hermitean, scalar, tempered fieldA(x) the locality axiom can be replaced by the following conditions 1. For any natural numbern there exist a) a configurationX(n): $$X_1 ,...,X_{n - 1} X_1^i = \cdot \cdot \cdot = X_{n - 1}^i = 0i = 0,3$$ with \(\left[ {\sum\limits_{i = 1}^{n - 2} {\lambda _i } (X_i^1 - X_{i + 1}^1 )} \right]^2 + \left[ {\sum\limits_{i = 1}^{n - 2} {\lambda _i } (X_i^2 - X_{i + 1}^2 )} \right]^2 > 0\) for all λ i ≧0i=1,...,n?2, \(\sum\limits_{i = 1}^{n - 2} {\lambda _i > 0} \) , b) neighbourhoods of theX i 's:U i (X i )?R 4 i=1,...,n?1 (in the euclidean topology ofR 4) and c) a real number α>1 such that for all points (x):x 1, ...,x n?1:x i U i (X r ) there are positive constantsC (n){(x)},h (n){(x)} with: $$\left| {\left\langle {\left[ {A(x_1 )...A(x_{n - 1} ),A(x_n )} \right]} \right\rangle } \right|< C^{(n)} \left\{ {(x)} \right\}\exp \left\{ { - h^{(n)} \left\{ {(x)} \right\}r^\alpha } \right\}forx_n = \left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ r \\ \end{array} } \right),r > 1.$$ 2. For any natural numbern there exist a) a configurationY(n): $$Y_2 ,Y_3 ,...,Y_n Y_3^i = \cdot \cdot \cdot = Y_n^i = 0i = 0,3$$ with \(\left[ {\sum\limits_{i = 3}^{n - 1} {\mu _i (Y_i^1 - Y_{i{\text{ + 1}}}^{\text{1}} } )} \right]^2 + \left[ {\sum\limits_{i = 3}^{n - 1} {\mu _i (Y_i^2 - Y_{i{\text{ + 1}}}^{\text{2}} } )} \right]^2 > 0\) for all μ i ≧0,i=3, ...,n?1, \(\sum\limits_{i = 3}^{n - 1} {\mu _i > 0} \) , b) neighbourhoods of theY i 's:V i(Y i )?R 4 i=2, ...,n (in the euclidean topology ofR 4) and c) a real number β>1 such that for all points (y):y 2, ...,y n y i V i (Y i there are positive constantsC (n){(y)},h (n){(y)} and a real number γ(n){(y)∈a closed subset ofR?{0}?{1} with: γ(n){(y)}\y 2,y 3, ...,y n totally space-like in the order 2, 3, ...,n and $$\left| {\left\langle {\left[ {A(x_1 ),A(x_2 )} \right]A(y_3 )...A(y_n )} \right\rangle } \right|< C_{(n)} \left\{ {(y)} \right\}\exp \left\{ { - h_{(n)} \left\{ {(y)} \right\}r^\beta } \right\}$$ for \(x_1 = \gamma _{(n)} \left\{ {(y)} \right\}r\left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 1 \\ \end{array} } \right),x_2 = y_2 - [1 - \gamma _{(n)} \{ (y)\} ]r\left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 1 \\ \end{array} } \right)\) and for sufficiently large values ofr.  相似文献   

15.
We calculate the (parity-violating) spin-rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Our result for np spin rotation is $\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right), while for nd spin rotation we obtain $\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right), where the g (X-Y), in units of $MeV^{ - \frac{3} {2}}$MeV^{ - \frac{3} {2}}, are the presently unknown parameters in the leading-order parity-violating Lagrangian. Using naıve dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be $\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m}$\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m} for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations indicates excellent convergence. An appendix contains the relevant partial-wave projectors of the three-nucleon system.  相似文献   

16.
DIPTIMOY GHOSH 《Pramana》2012,79(4):895-898
A comprehensive study of the impact of new-physics operators with different Lorentz structures on decays involving the b ?? s ?? ?+? ?? ? transition is performed. The effects of new vector?Caxial vector (VA), scalar?Cpseudoscalar (SP) and tensor (T) interactions on the differential branching ratios, forward?Cbackward asymmetries (A FB??s), and direct CP asymmetries of ${\bar B}_{\rm s}^0 \to \mu^+ \mu^-$ , ${\bar B}_{\rm d}^0 \to$ $ X_{\rm s} \mu^+ \mu^-$ , ${\bar B}_{\rm s}^0 \to \mu^+ \mu^- \gamma$ , ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ , and ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ are examined. In ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ , we also explore the longitudinal polarization fraction f L and the angular asymmetries $A_{\rm T}^{(2)}$ and A LT, the direct CP asymmetries in them, as well as the triple-product CP asymmetries $A_{\rm T}^{\rm (im)}$ and $A^{\rm (im)}_{\rm LT}$ . While the new VA operators can significantly enhance most of the observables beyond the Standard Model predictions, the SP and T operators can do this only for A FB in ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ .  相似文献   

17.
18.
Neutrino interactions with two muons in the final state have been studied using the Fermilab narrow band beam. A sample of 18v μ like sign dimuon events withP μ>9 GeV/c yields 6.6±4.8 events after backgroud subtraction and a prompt rate of (1.0±0.7)×10?4 per single muon event. The kinematics of these events are compared with those of the non-prompt sources. A total of 437v μ and 31 \(\bar v_\mu \) opposite sign dimuon events withP μ>4.3 GeV/c are used to measure the strange quark content of the nucleon: \(\kappa = {{2s} \mathord{\left/ {\vphantom {{2s} {\left( {\bar u + \bar d} \right) = 0.52_{ - 0.15}^{ + 0.17} \left( {or\eta _s \frac{{2s}}{{u + d}} = 0.075 \pm 0.019} \right) for 100< E_v< 230 GeV\left( {\left\langle {Q^2 } \right\rangle = {{23 GeV^2 } \mathord{\left/ {\vphantom {{23 GeV^2 } {c^2 }}} \right. \kern-0em} {c^2 }}} \right)}}} \right. \kern-0em} {\left( {\bar u + \bar d} \right) = 0.52_{ - 0.15}^{ + 0.17} \left( {or\eta _s \frac{{2s}}{{u + d}} = 0.075 \pm 0.019} \right) for 100< E_v< 230 GeV\left( {\left\langle {Q^2 } \right\rangle = {{23 GeV^2 } \mathord{\left/ {\vphantom {{23 GeV^2 } {c^2 }}} \right. \kern-0em} {c^2 }}} \right)}}\) using a charm semileptonic branching ratio of (10.9±1.4)% extracted from measurements ine + e ? collisions and neutrino emulsion data.  相似文献   

19.
Feynman diagrammatic technique was used for the calculation of Hartree-Fock and correlation energies, relativistic corrections, dipole matrix element. The whole energy of atomic system was defined as a polen-electron Green function. Breit operator was used for the calculation of relativistic corrections. The Feynman diagrammatic technique was developed for 〈HB>. Analytical expressions for the contributions from diagrams were received. The calculations were carried out for the terms of such configurations as 1s2 2sn1 2pn2 (2 ≧n1≧ 0, 6≧ n2 ≧ 0). Numerical results are presented for the energies of the terms in the form $$E = E_0 Z^2 + \Delta {\rm E}_2 + \frac{1}{Z}\Delta {\rm E}_3 + \frac{{\alpha ^2 }}{4}(E_0^r + \Delta {\rm E}_1^r Z^3 )$$ and for fine structure of the terms in the form $$\begin{gathered} \left\langle {1s^2 2s^{n_1 } 2p^{n_2 } LSJ|H_B |1s^2 2s^{n_1 \prime } 2p^{n_2 \prime } L\prime S\prime J} \right\rangle = \hfill \\ = ( - 1)^{\alpha + S\prime + J} \left\{ {\begin{array}{*{20}c} {L S J} \\ {S\prime L\prime 1} \\ \end{array} } \right\}\frac{{\alpha ^2 }}{4}(Z - A)^3 [E^{(0)} (Z - B) + \varepsilon _{co} ] + \hfill \\ + ( - 1)^{L + S\prime + J} \left\{ {\begin{array}{*{20}c} {L S J} \\ {S\prime L\prime 2} \\ \end{array} } \right\}\frac{{\alpha ^2 }}{4}(Z - A)^3 \varepsilon _{cc} . \hfill \\ \end{gathered} $$ Dipole matrix elements are necessary for calculations of oscillator strengths and transition probabilities. For dipole matrix elements two members of expansion by 1/Z have been obtained. Numerical results were presented in the form P(a,a′) = a/Z(1+τ/Z).  相似文献   

20.
方明卫  何建超  胡战超  包芸 《中国物理 B》2022,31(1):14701-014701
We study the characteristics of temperature fluctuation in two-dimensional turbulent Rayleigh–Benard convection in′a square cavity by direct numerical simulations.The Rayleigh number range is 1×108≤Ra≤1×1013,and the Prandtl number is selected as Pr=0.7 and Pr=4.3.It is found that the temperature fluctuation profiles with respect to Ra exhibit two different distribution patterns.In the thermal boundary layer,the normalized fluctuationθrms/θrms,max is independent of Ra and a power law relation is identified,i.e.,θrms/θrms,max~(z/δ)0.99±0.01,where z/δis a dimensionless distance to the boundary(δis the thickness of thermal boundary layer).Out of the boundary layer,when Ra≤5×109,the profiles ofθrms/θrms,max descend,then ascend,and finally drop dramatically as z/δincreases.While for Ra≥1×1010,the profiles continuously decrease and finally overlap with each other.The two different characteristics of temperature fluctuations are closely related to the formation of stable large-scale circulations and corner rolls.Besides,there is a critical value of Ra indicating the transition,beyond which the fluctuation hθrmsiV has a power law dependence on Ra,given by hθrmsiV~Ra?0.14±0.01.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号