首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Methoxypoly(ethylene glycol)-b-oligo-L-lactate (mPEG-b-OLA) diblock oligomers with monodisperse OLA blocks were obtained by fractionation of polydisperse block oligomers using preparative HPLC. The fractionated oligomers were composed of an mPEG block with a molecular weight of 350, 550, or 750 and an OLA block with a degree of polymerization of 4, 6, 8, or 10. The diblock oligomers with a low PEG content were fully amorphous, with glass transition temperatures ranging from -60 to -20 degrees C, indicating that the blocks were miscible. Upon heating aqueous dispersions of the block oligomers, cloud points, depending on the PEG/OLA ratio of the block oligomer, were observed at temperatures above 40 degrees C. The monodispersity of the hydrophobic block enabled the amphiphilic molecules to form nanoparticles in water with a hydrodynamic radius of 130-300 nm, at concentrations above the critical aggregation concentration (0.4-1 mg/mL), whereas polydisperse mPEG-b-OLAs gave formation of large aggregates. Static light scattering measurements showed that the nanoparticles have a low density (0.6-25 mg/mL), indicating that the particles are highly hydrated. In agreement herewith, the (1)H NMR spectra of nanoparticles in D2O closely resembled spectra in a good solvent for both blocks (CDCl3). It is therefore suggested that the nanoparticles contain a hydrated core of mPEG-b-OLA block oligomers, stabilized by a thin outer PEG layer. The particles were stable for two weeks, except for the mPEG350 series and mPEG750-b-OLA4, indicating that both the PEG block size and the PEG weight fraction of the oligomers determine their stability. The evident self-emulsifying properties of mPEG-b-oligo-l-lactates with monodisperse hydrophobic blocks as demonstrated in this study, together with their expected biocompatibility and biodegradability, make these systems well suitable for pharmaceutical applications.  相似文献   

2.
Poly(ethylene glycol) (PEG) end capped with biodegradable hydrophobic dipeptides shows versatile gelation behavior in a wide range of aqueous and organic solvents. This gelation characteristic is attributed to the aggregation of polymer chains induced by dipeptide end groups. Both PEG molecular weight and molecular structure of end groups control this aggregation by striking a balance between two opposing molecular interactions: solubility of the PEG segment which tends to dissolve the polymer while hydrophobic and intermolecular noncovalent interactions between the end groups induce aggregation. Morphologically, this aggregated structure forms interpenetrating nano sheets with characteristic microstructural features. These gels are biodegradable and possess physicomechanical characteristics suitable for biomedical applications. Furthermore, proteins and hydrophobic model drugs can be encapsulated within the gels from aqueous and organic solvents, respectively, and can be released in a controlled fashion which indicates the applicability of the gels as drug delivery vehicles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1917–1928  相似文献   

3.
The total syntheses of four PEG-functionalized porphyrins, containing one to four low molecular weight PEG chains linked via amide bonds to the para-phenyl positions of meso-tetraphenylporphyrin, are reported. The hydrophobic character of the PEG-porphyrins decreases with the number of PEG chains linked to the porphyrin ring, while their tendency for aggregation in buffered aqueous solution increases. The porphyrins containing one or two PEG chains accumulated within human HEp2 cells to a much higher extent than those having three or four PEGs at the macrocycle periphery. All PEG-porphyrins were found to be non-toxic in the dark, and only those containing one or two PEG chains were phototoxic (IC(50)=2 microM at 1J/cm(2) light dose). The preferential sites of subcellular localization of the porphyrins containing one or two PEG chains were found to be the mitochondria and endoplasmic reticulum (ER), while those containing three or four PEG chains localize preferentially in the lysosomes.  相似文献   

4.
The interaction of lithium perfluoroheptanoate (LiPFHep) with poly(ethylene glycol) (PEG) of different molecular weights (300 < MW < 20 000 Da) was investigated in water at 298.15 and 308.15 K by the isothermal titration calorimetry (ITC). Density and sound velocity measurements were also performed at 288.15, 298.15, and 308.15 K, while viscosity and conductivity data were only collected at 298.15 K. The aggregation process of this surfactant on the PEG polymeric chain was found to be very similar to the process exhibited by the two homologous perfluorooctanoate and perfluorononanoate. Viscosity and ITC data indicated that the formation of polymer-surfactant complexes between PEG and LiPFHep also leads to a conformational change in the polymer. The aggregation of micelles of the lithium perfluoro surfactants on the PEG polymeric chain is characterized by a comparable thermodynamic stability, which results from a balance of enthalpy and entropy contributions, which both increase with the length of the surfactant hydrophobic chain.  相似文献   

5.
The preparation and properties of asymmetric poly(vinyldiene fluoride)(PVDF)membranes are described in this study.Membranes were prepared from a casting solution of PVDF,N,N-dimethylacetamide(DMAc)solvent and water- soluble poly(ethylene glycol)(PEG)additives by immersing them in water as coagulant medium.Experiments showed that when PEG molecular weight increased,the changes in the resultant membranes' morphologies and properties showed a transition point at PEG6000.This indicated that PEG with a relati...  相似文献   

6.
Although poly(ethylene glycol) (PEG) has been widely used as an agent to induce cell aggregation and fusion, the physicochemical principles of its function are only becoming understood recently. PEG has an extremely high affinity for water. The PEG commonly used for these applications is in the molecular weight range of 8000 to 10 000. At low concentrations (0–15 wt.%), PEG in this molecular weight range tends to deplete from cell or lipid surfaces, creating an osmotic gradient which brings cells or lipid vesicles together. The depletion force is measured using a surface force apparatus. The corresponding reduction of surface viscosity is verified by shear viscosity measurements and by vesicle tumbling experiments. At higher concentrations (15–45 wt.%), the extremely high osmotic pressure generated by PEG compresses apposing surfaces of aggregated cells or vesicles to within limits where the membrane is no longer stable, and fusion occurs at point defects. A fusion lumen is formed with the help of cell swelling. If PEG is adsorbed or covalently link to the cell or vesicle surface, the surface force profile becomes entirely repulsive, and aggregation and fusion is inhibited. The repulsion is accountable by steric and electrostatic forces. Therefore, the fusogenic function of PEG can be explained quantitatively by colloidal stability theories.  相似文献   

7.
The synthesis of well‐defined diblock copolymers by atom transfer radical polymerization (ATRP) was explored in detail for the development of new colloidal carriers. The ATRP technique allowed the preparation of diblock copolymers of poly(ethylene glycol) (PEG) (number‐average molecular weight: 2000) and ionic or nonionizable hydrophobic segments. Using monofunctionalized PEG macroinitiator, ionizable and hydrophobic monomers were polymerized to obtain the diblock copolymers. This polymerization method provided good control over molecular weights and molecular weight distributions, with monomer conversions as high as 98%. Moreover, the copolymerization of hydrophobic and ionizable monomers using the PEG macroinitiator made it possible to modulate the physicochemical properties of the resulting polymers in solution. Depending on the length and nature of the hydrophobic segment, the nonionic copolymers could self‐assemble in water into nanoparticles or polymeric micelles. For example, the copolymers having a short hydrophobic block (5 < degree of polymerization < 9) formed polymeric micelles in aqueous solution, with an apparent critical association concentration between 2 and 20 mg/L. The interchain association of PEG‐based polymethacrylic acid derivatives was found to be pH‐dependent and occurred at low pH. The amphiphilic and nonionic copolymers could be suitable for the solubilization and delivery of water‐insoluble drugs, whereas the ionic diblock copolymers offer promising characteristics for the delivery of electrostatically charged compounds (e.g., DNA) through the formation of polyion complex micelles. Thus, ATRP represents a promising technique for the design of new multiblock copolymers in drug delivery. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3861–3874, 2001  相似文献   

8.
Here, we report the first example of transition metal-catalyzed one-pot synthesis of water-soluble dendritic molecular nanocarriers behaving like unimolecular micelles. Using the palladium-alpha-diimine chain walking catalyst, copolymerization of ethylene and comonomer 3 afforded, in one step, amphiphilic copolymer 1 having a hydrophobic core and a hydrophilic shell. A much larger amphiphilic core-shell copolymer 2 was synthesized by a two-step approach: a copolymer having many free hydroxyl groups was first prepared, which was subsequently coupled to poly(ethylene glycol) (PEG) to afford the copolymer 2. Light-scattering, fluorescence, and UV/vis spectroscopic studies with Nile Red in aqueous solution showed unimolecular micellar properties for both copolymers 1 and 2. The dye encapsulation capacity for the core-shell copolymers is nearly proportional to the molecular weight of the hydrophobic core. The unimolecular micellar properties coupled with the good water solubility and biocompatibility of the PEG moieties make these molecular nanocarriers promising candidates for many applications including drug delivery and controlled drug release.  相似文献   

9.
5,10,15,20-Tetrakis(4-hydroxyphenyl)porphyrin was functionalized by covalent attachment of poly(ethylene glycol) (PEG) chains of various molecular weights, 350, 2000, and 5000 Da. The properties of PEG-functionalized tetraarylporphyrins in aqueous solution and their interactions with liposomes have been studied. Electronic absorption spectroscopy, dynamic light scattering, atomic force microscopy, and fluorescence quenching were used to monitor aggregation of porphyrin chromophores and behavior of the attached PEG chains in the aqueous solution. The tendency for aggregation of porphyrin chromophores in aqueous solution and the efficiency of fluorescence quenching by KI decrease with increasing length of PEG chain linked to the porphyrin ring. The experimental results indicate that polymer clusters are present in aqueous solution of all pegylated porphyrins. The interactions between the pegylated porphyrins and phosphatidylcholine liposomes in the aqueous solution were studied using the fluorescence methods. The apparent binding constants of porphyrin chromophores to liposomes were determined. The degree of binding was found to be dependent on the molecular weight of the attached polymer.  相似文献   

10.
Uniform poly(ethylene glycol) (PEG) oligomers, with a degree of polymerization n=1-40, were separated by preparative supercritical fluid chromatography from commercial monodispersed samples. Diffusion coefficients, D, for separated uniform PEG oligomers were measured in dilute solutions of deuterium oxide (D(2)O) at 30 degrees C, using pulsed-field gradient nuclear magnetic resonance. The measured D for each molecular weight was extrapolated to infinite dilution. Diffusion coefficients obtained at infinite dilution follow the scaling behavior of Zimm-type diffusion, even in the lower molecular weight range. Molecular-dynamics simulations for PEG in H(2)O also showed this scaling behavior, and reproduced close hydrodynamic interactions between PEG and water. These findings suggest that diffusion of PEG in water is dominated by hydrodynamic interaction over a wide molecular weight range, including at low molecular weights around 1000.  相似文献   

11.
A series of water-soluble, amphiphilic graft copolymers has been prepared by free-radical copolymerization of methoxypoly(ethylene glycol) macromonomers, with either methyl methacrylate or butyl methacrylate as the comonomers, in water/ethanol solvent mixtures. Lower molecular weight copolymers were obtained by increasing the concentration of the initiator, azobisisobutyronitrile (AIBN), used in the polymerization reaction. However, the route used also led to the formation of significant quantities of tetramethylsuccinodinitrile, a toxic byproduct resulting from the cage reaction of AIBN. Static fluorescence measurements using pyrene as a probe, along with 1H NMR experiments, showed that the graft copolymers form aggregates in water at very low concentrations (approximately 0.01 g l(-1)) with the pendant hydrophilic graft chains forming a stabilizing shell around the hydrophobic backbone. An increase in the hydrophile-lipophile balance of the graft copolymers was found to lead to smaller aggregates with lower aggregation numbers and highly swollen hydrophilic shells, as revealed by small angle neutron scattering (SANS).  相似文献   

12.
The aggregation behaviour of PEO-PPO-PEO triblock copolymers in water and in water + chlorinated additive mixtures was studied by means of fluorescence spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The copolymers were chosen such as to investigate the effects of molecular architecture (L35 and 10R5) and molecular weight by keeping constant the hydrophilic/hydrophobic balance (F88 and F108). 1,2-Dichloroethane was used as a prototype of water basins contaminants. The hydrodynamic radius of the block copolymer aggregates (R(h,M)) and the intensity ratio of pyrene of the first and the third vibrational band (I(1)/I(3)) were determined as a function of temperature (10-45 degrees C) and concentration. The copolymer architecture essentially does not affect R(h,M) in the entire range of temperature and concentration investigated. At a given temperature, increasing macromolecular size leads to a decrease of R(h,M). With rising temperature R(h,M) also decreases. According to the DLS results, the I(1)/I(3) change with temperature clearly detects the aggregation only for F88 and F108. The presence of 1,2-dichloroethane, at concentrations close to its solubility in water, does not lead to changes in the distribution of hydrodynamic radii for L35 and 10R5. Larger quantities of additive induce the formation of quite polydisperse mixed aggregates for L35 and of networks for 10R5. In the case of F88 and F108, low concentrations of additive lead to formation of mixed aggregates with smaller R(h,M). The SANS results corroborate the DLS and fluorescence findings proving enhancement of the copolymer aggregation through the presence of 1,2-dichloroethane. The DLS findings combined with those from the fluorescence spectroscopy provide some insight into the site of solubilisation of the additive in the aggregates.  相似文献   

13.
温敏性PCL-PEG-PCL水凝胶的合成、表征及蛋白药物释放   总被引:2,自引:0,他引:2  
考察了温敏性PCL-PEG-PCL水凝胶中聚乙二醇(PEG)及聚己内酯(PCL)不同嵌段组成对其溶胶-凝胶相转变温度以及亲水性药物(牛血清白蛋白, BSA)释放速率的影响. 采用开环聚合法, 以辛酸亚锡为催化剂、PEG1500/PEG1000为引发剂, 与己内酯单体发生开环共聚, 合成了一系列具有不同PEG和PCL嵌段长度的PCL-PEG-PCL型三嵌段共聚物. 通过核磁共振氢谱及凝胶渗透色谱对其组成、结构及分子量进行了表征. 共聚物的溶胶-凝胶相变温度由翻转试管法测定. 利用透射电镜、核磁共振氢谱及荧光探针技术证实了该材料在水溶液中胶束的形成. 以BSA为模型蛋白药物, 制备载药水凝胶, 利用microBCA法测定药物在释放介质中的浓度, 研究其体外释放行为. 实验结果表明, 共聚物的溶胶-凝胶相变温度与PCL及PEG嵌段长度紧密相关, 即在给定共聚物浓度情况下, 固定PEG嵌段长度而增加PCL嵌段长度, 会导致相变温度降低; 而固定PCL嵌段长度而增加PEG嵌段长度, 其相变温度相应升高. 水凝胶中蛋白药物的释放速率与疏水的PCL嵌段长度无关, 而与亲水的PEG嵌段长度密切相关, 即PEG嵌段越长, 蛋白药物释放越快.  相似文献   

14.
The surface active properties of aqueous solutions of invertible amphiphilic alternated polyesters differing by hydrophilic-lipophilic balance (HLB) and molecular weight have been determined over the wide concentration range. The polyesters are based on poly(ethylene glycol) (PEG) of two molecular weights and aliphatic dicarboxylic acids (decanedioic and dodecanedioic). The surface activity of the polyesters and their ability to form micellar assemblies (which was recently shown for organic solvents) has been confirmed in water. The central role of the balance of hydrophilic to hydrophobic groups ratio in the formation of polymeric arrangements having hydrophobic pockets and external hydrophilic shell has been shown. The effect of molecular weight has been found considerable as well. Two changes in slope have been observed for the more hydrophobic polyesters in the surface tension vs log concentration curve. The change at low concentration is believed to originate from the formation of polyester assemblies with a hydrophobic interior and hydrophilic exterior due to the interaction of hydrophobic fragments and macromolecular flexibility. The higher concentration region exhibits behavior consistent with a cmc, which was confirmed by additional dye solubilization experiments. Molecular structure of the polyester micelles is determined by the solubilization of a solvatochromic dye. The experiment confirmed that micellization of polyesters is accompanied by the association of more hydrophobic (aliphatic) constituents forming the micelle interior. The hydrophilic fragments (ethylene oxide groups) are involved in the formation of micelle exterior.  相似文献   

15.
Titration microcalorimetry and steady-state fluorescence spectroscopy have been used to study the aggregation of mono-endcapped hydrophobically modified poly(sodium acrylate)s in aqueous solution. Polymers with molecular weights varying between 800 and 31,700 were synthesized by radical polymerization using an initiator and chain transfer agent. The resulting polymers form hydrophobic microdomains in aqueous solutions. The following conditions were applied: no salt and pH 5 and 9, respectively; 1 M sodium citrate and pH 9. At pH 5 the critical aggregation concentration (CAC, the concentration at which microdomains are formed) increases with increasing molecular weight of the polymers. The concentration range for aggregation is about 0.2-2.4 mM. At pH 9 the carboxylic acid groups are deprotonated and electrostatic repulsions are introduced; therefore the concentration for aggregation rises to about 80 mM. Interestingly, in case of polymers having M(n)<1400 the CAC decreases with increasing molecular weight due to a counterion-concentration gradient toward the hydrophobic microdomain. Near the microdomain the counterion binding is increased, reducing the electrostatic repulsions and allowing for lower aggregation concentrations. In the presence of 1 M sodium citrate this anomalous trend is suppressed to a large extent; since the overall counterion binding is increased and the CAC is lower. The concentration for aggregation is then in the same range as at pH 5 in the absence of salt. Copyright 2000 Academic Press.  相似文献   

16.
The interaction of lithium perfluorononanoate (LiPFN) with poly(ethylene glycol) (PEG) molecules of different molecular weights (300 < MW < 20000 Da) has been investigated in water at 298.15 and 308.15 K by isothermal titration calorimetry (ITC). Density, viscosity, and conductivity measurements were also performed at 298.15 K. The aggregation process of this surfactant on the PEG polymeric chain was found to be very similar to that exhibited by cesium perfluorooctanoate (CsPFO) and appears to be consistent with the necklace model. ITC titrations indicated that a fully formed LiPFN micellar cluster can be wrapped by a PEG chain having a molecular weight (MW) of approximately 3200 Da, longer than that required by the shorter perfluorooctanoate (MW approximately 2600 Da), and also suggested a stepwise mechanism for the aggregation of successive micelles. Viscosity data indicate that the formation of polymer-surfactant complexes between PEG and LiPFN involves a conformational change of the polymer. The aggregation of preformed micelles of LiPFN or CsPFO or SDS on the PEG polymeric chain always gives rise to further stabilization.  相似文献   

17.
We have synthesised a new, pyrene‐based, low‐molecular‐mass, amphiphilic molecule that displays a wealth of properties of potential interest for aggregation and interfacial applications. In order to elucidate some of the key properties of this molecule, which consists of a pyrene‐containing hydrophobic head and a short PEG‐based hydrophilic tail, we investigate herein some aspects of its concentration‐dependent behaviour in aqueous solutions. We show that the inclusion of the hydrophobic pyrene group not only provides the molecule with intriguing bulk and interfacial properties down to low concentrations, but also with various means of assessing its aggregation behaviour by means of its well‐characterised fluorescence properties. Combining a range of fluorescence techniques with microscopic imaging (optical and Cryo‐TEM), interfacial tension measurements and foaming studies, we have been able to identify and characterise three concentration‐dependant regimes. At low concentrations, the molecule is dissolved in monomeric form. At intermediate concentrations, labile aggregates are formed, which, at higher concentrations, give way to aggregates containing pre‐associated pyrenes. Our measurements strongly imply that the latter aggregates are hexagonally close‐packed tubular micelles. In this latter regime we also find a range of micron‐sized precipitates. Additionally, the molecule displays strong interfacial activity, yet a surprisingly slow dynamics of interfacial adsorption. Finally, we demonstrate the possibility of using it to visualize interfaces and also create reasonably stable (1 hour) and fluorescing foams.  相似文献   

18.
The self-assembly and bioactivity of the peptide–polymer conjugate DGRFFF–PEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol−1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of β-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFF–PEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the core–shell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.  相似文献   

19.
Tuberculosis (TB) is the second most deadly infectious disease behind the Human Immunodeficiency Virus (HIV). An effective pharmacotherapy has been available for more than 5 decades. However, the length of the treatment and the pill burden result in low patient compliance and adherence to the regimens. Nanotechnologies can overcome these basic technological drawbacks. The present work explored the molecular implications governing the encapsulation and water solubilization of RIF within flower-like micelles of poly(epsilon-caprolactone)-b-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) block copolymers. Ten derivatives of different molecular weight and hydrophobic/hydrophilic caprolactone/ethylene oxide ratio (CL/EO) were synthesized by a fast and high-yield Microwave-Assisted Polymer Synthesis (MAPS) technique; CL/EO values are determined by taking the ratios of the number of repeating units in the PCL and the PEG segments. The aggregation behavior of the copolymers was thoroughly investigated by means of surface tension (critical micellar concentration), dynamic light scattering (size, size distribution and zeta potential) and transmission electron microscopy (morphology). In general, the greater the central PEG segment, the larger the micelles formed. The physical stability was intimately associated with the molecular weight and the composition. Then, the encapsulation of RIF in the different copolymer families was evaluated, and the physical stability of the drug-loaded aggregates characterized. The micellar size appears as the most crucial property, this phenomenon being primarily controlled by the molecular weight of the PEG central block. Having expressed this, sufficiently high CL/EO ratios (and long PCL segments) are also demanded to attain stable micellar systems with cores that are large enough to host the bulky RIF molecule.  相似文献   

20.
A solution of γ-crystallin became turbid upon beating at 65 °C for 30 minutes; however, addition of α-crystallin suppressed this thermal aggregation. It was found the effective chaperone function could be achieved with the molar ratio of α/γ greater than 1/20. In terms of crystallin subunit, five molecular α-crystallin subunits could afford chaperone for one molecular γ-crystallin. The gel filtration profile of the sample solution, containing α- and γ-crystallins and preincubation at 65 °C for 30 minutes, showed complex formation between α- and γ-crystallins, indicating α-crystallin was bound to thermally denatured γ-crystallin. A 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence study showed that α-crystallin has more hydrophobic regions exposed after thermal incubation. In the presence of urea, both the α-crystallin chaperone activity and the ANS fluorescence intensity decreased. Accordingly, hydrophobic regions of α-crystallin play an indispensible role in its chaperone activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号