首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the increased demand for new reference materials certified for total and methylmercury (MeHg) a sample of mussel homogenate (IAEA-142) has been prepared. Thirteen experienced laboratories reported results for total Hg of which 9 laboratories also reported results for MeHg content. Laboratories reporting MeHg results used various isolation techniques (solvent extraction, saponification, acid leaching, ion-exchange separation, and distillation) and detection systems (cold vapour atomic absorption spectrometry (CV AAS), cold vapour atomic fluorescence spectrometry (CV AFS), gas chromatography with electron capture detector (GC/ECD) and HPLC with CV AAS detector). In the case of total Hg, most of the laboratories used acid digestion, only two used alkaline dissolution, followed either by CV AAS or CV AFS. One laboratory used neutron activation analyses with radiochemical separation. The data received were in good agreement. The value for total Hg was certified to be 126 ng/g, with a 95% confidence interval from 119 to 132 ng/g. For MeHg the certified value of 47 ng/g expressed as Hg was assigned, with a 95% confidence interval from 43 to 51 ng/g. Stability testing has shown that both total and MeHg are stable if samples are stored in a dry and dark place at room temperature. The sample is now available as a certified reference material and is, in particular, useful for quality control measurements of Hg and MeHg in mussel samples at low concentration levels.  相似文献   

2.
An intercomparison exercise was organized between seven laboratories using various isolation procedures (extraction, distillation, ion-exchange and alkaline digestion) and detection systems (CV AAS, cold vapour atomic absorption spectroscopy; CV AFS, cold vapour atomic fluorescence spectroscopy; GC, ECD, gas chromatography electron capture detector and HPLC with CV AFS detection) for determination of methylmercury compounds in sediment sample. All certification criteria were fulfilled and therefore the value for total concentration of methylmercury compounds was certified to be 5.46 ng g?1, with a 95% confidence interval from 4.07–5.84 ng g?1. The acceptable range, calculated as two times the confidence interval of the mean is therefore from 4.68–6.23 ng g?1. This is the first sediment reference material ever to be certified for concentration of methylmercury compounds. Comparison of the data obtained by various methodologies has shown that the most critical step is the isolation of methylmercury compounds from binding sites. Acid leaching only cannot release methylmercury compounds quantitatively. Total release of methylmercury compounds could only be achieved by alkaline digestion or distillation. This simple intercomparison exercise has shown that since large numbers of laboratories world-wide are performing methylmercury compound analyses using various improved and specific separation methods and sensitive detection systems, certification of methylmercury compounds in different biological and environmental samples should not be a problem in the future.  相似文献   

3.
The purpose of the present work was to develop a simple, rapid, sensitive and accurate method for the simultaneous determination of inorganic mercury (Hg(2+)) and monomethylmercury compounds (MeHg) in natural water samples at the pg L(-1) level. The method is based on the simultaneous extraction of MeHg and Hg(2+)dithizonates into an organic solvent (toluene) after acidification of about 300 mL of a water sample, followed by back extraction into an aqueous solution of Na(2)S, removal of H(2)S by purging with N(2), subsequent ethylation with sodium tetraethylborate, room temperature precollection on Tenax, isothermal gas chromatographic separation (GC), pyrolysis and cold vapour atomic fluorescence spectrometric detection (CV AFS) of mercury. The limit of detection calculated on the basis of three times the standard deviation of the blank was about 0.006 ng L(-1) for MeHg and 0.06 ng L(-1) for Hg(2+)when 300 mL of water was analysed. The repeatability of the results was about 5% for MeHg and 10% for Hg(2+). Recoveries were 90-110% for both species.  相似文献   

4.
A simple and ultrasensitive method, which was based on cold vapor generation (CVG) coupled to atomic fluorescence spectrometry (AFS), was proposed for speciation analysis of inorganic mercury (Hg2+) and methylmercury (MeHg) in water samples. In the presence of UV irradiation, all the mercury (MeHg+Hg2+) in a sample solution can be reduced to Hg0 by SnCl2; without UV irradiation, only Hg2+ species can be determined. So the concentration of MeHg can be obtained from the difference of the total mercury and Hg2+ concentration; thus, speciation analysis of Hg2+ and MeHg was simply achieved without chromatographic separation. Under the optimized experimental conditions, the limits of detection were 0.01 ng mL-1 for both Hg2+ and MeHg. The sensitivity and limit of detection were not dependent on the mercury species, and a simple Hg2+ aqueous standard series can be used for the determination of both Hg2+ and MeHg.  相似文献   

5.
In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg(2+)), methylmercury (MeHg(+)) and ethylmercury (EtHg(+)) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3σ) were found to be 0.03, 0.11 and 0.09 μg L(-1) for MeHg(+), Hg(2+) and EtHg(+), respectively. The relative standard deviation (RSD, n=6) of the peak height for 3, 6 and 3 μg L(-1) of MeHg(+), Hg(2+) and EtHg(+) (as Hg) ranged from 2.4 to 4.0%. Compared with the conventional HPLC-CV/AFS hyphenated systems, the proposed MSC-CV/AFS system permitted a higher sampling frequency and low instrumental and operational costs. The developed method was validated by the determination of a certified reference material DORM-2 (dogfish muscle), and was further applied for the determination of mercury species environmental and biological samples.  相似文献   

6.
建立了微波萃取高效液相色谱-冷原子荧光光谱法(MAE-HPLC-CVAFS)测定沉积物中甲基汞(MeHg+)和无机汞(Hg2+)的方法。以0.1%(V/V)2-巯基乙醇为萃取剂,用于沉积物样品中汞形态的萃取,在80℃下萃取8 min,萃取液直接注入HPLC-CVAFS系统分析。在优化条件下,MeHg+和Hg2+的检出限分别为0.58和0.48 ng/g;加标回收率分别为96.2%和95.8%;RSD(n=6)分别为5.7%和4.1%。对标准参考物质(IAEA-405和ERM-CC580)的分析结果与推荐值一致。本方法简单、快速、准确、检出限低,抗干扰能力强,具有很好的实用性和推广价值。  相似文献   

7.
A simple and reliable method to determine total and inorganic mercury in biological certified reference material (CRM) by cold vapor atomic absorption spectrometry (CV AAS) is proposed. After the CRM treatment at room temperature with tetramethylammonium hydroxide (TMAH), inorganic mercury is determined by CV AAS. Total mercury is measured by the same technique, after sample acid digestion in a microwave oven. Organic mercury, basically methylmercury, is obtained by difference. In both procedures, the quartz tube is kept at room temperature. By means of analysis of the following reference materials: pig kidney, lobster hepatopancreas, dogfish liver and mussel tissue, it was clear that the difference between the total and inorganic mercury concentrations agrees with the methylmercury concentration. Only one calibration curve against aqueous standards in acidic medium was carried out for both procedures. The concentrations obtained by both procedures are in agreement with the certified values according to the t-test at a 95% confidence level. The relative standard deviations were lower than 3.0% for digested CRM and 6.0% for CRM treated with TMAH for most of the samples. The limits of detection in the samples were 0.02 µg g− 1 and 0.04 µg g− 1 for inorganic and total Hg, respectively, since the sample mass for total mercury was half of that for inorganic mercury determination. Simplicity and high efficiency without using chromatographic techniques are some of the qualities of the proposed method, being adequate for fractionation analysis of mercury in biological samples.  相似文献   

8.
《Microchemical Journal》2010,94(2):206-210
A simple and reliable method to determine total and inorganic mercury in biological certified reference material (CRM) by cold vapor atomic absorption spectrometry (CV AAS) is proposed. After the CRM treatment at room temperature with tetramethylammonium hydroxide (TMAH), inorganic mercury is determined by CV AAS. Total mercury is measured by the same technique, after sample acid digestion in a microwave oven. Organic mercury, basically methylmercury, is obtained by difference. In both procedures, the quartz tube is kept at room temperature. By means of analysis of the following reference materials: pig kidney, lobster hepatopancreas, dogfish liver and mussel tissue, it was clear that the difference between the total and inorganic mercury concentrations agrees with the methylmercury concentration. Only one calibration curve against aqueous standards in acidic medium was carried out for both procedures. The concentrations obtained by both procedures are in agreement with the certified values according to the t-test at a 95% confidence level. The relative standard deviations were lower than 3.0% for digested CRM and 6.0% for CRM treated with TMAH for most of the samples. The limits of detection in the samples were 0.02 µg g 1 and 0.04 µg g 1 for inorganic and total Hg, respectively, since the sample mass for total mercury was half of that for inorganic mercury determination. Simplicity and high efficiency without using chromatographic techniques are some of the qualities of the proposed method, being adequate for fractionation analysis of mercury in biological samples.  相似文献   

9.
A comprehensive method for simultaneous determination of methylmercury (MeHg) and ethylmercury (EtHg) in rice by capillary gas chromatography (GC) coupled on-line with atomic fluorescence spectrometry was developed. The experimental conditions, including the pyrolyzer temperature and flow rates of the make-up gas and sheath gas, were optimized in detail. The absolute detection limits (3sigma) were 0.005 ng as Hg for both MeHg and EtHg. The relative standard deviation values (n=5) for 10 ng Hg/mL of MeHg and EtHg were 2.5 and 1.3%, respectively. The method was evaluated by analyzing 2 certified reference materials (DORM-2 and GBW08508), and the determined values of MeHg and total mercury concentrations were in good agreement with the certified values. In addition, the recoveries of MeHg and EtHg spiked into a rice sample collected from Jiangsu province in China were 86 and 77%, respectively. The proposed method was applied to analysis of MeHg and EtHg in 25 rice samples cultivated in 15 provinces of China. In all samples, MeHg was detectable and no EtHg was found. The MeHg contents in rice samples ranged from 1.9 to 10.5 ng/g, accounting for 7-44% of the total mercury measured.  相似文献   

10.
Results of a thorough study and application of flow injection atomic absorption spectrometry for the determination of As, Pb and Hg in parts per million to sub-parts per billion levels in environmental and biological samples have been described. Various standard reference materials from the National Bureau of Standards, USA, the National Institute of Standards and Technology, USA, the Community Bureau of Reference, Brussels, Belgium and the National Institute for Environmental Studies, Japan and Standard Chinese river sediment were used. By flow injection hydride generation AAS the standard reference materials were analyzed for As and Pb. Mercury was determined by cold vapour flow injection AAS from environmental and biological standard reference materials. The technique is fast, simple and highly sensitive. It takes only 30 s for each analysis from the digested solution. The detection limits of As, Pb and Hg are 1.8 μg L–1 and 2.0 μg L–1 and 1.5 μg L–1, respectively. The results show good agreement with the certified values. Received: 9 May 1996 / Revised: 13 August 1996 / Accepted: 14 August 1996  相似文献   

11.
Several decomposition procedures and their influence on the determination of mercury by electrothermal (ET) and cold vapour (CV) atomic absorption spectrometry (AAS) have been studied. Soil samples were decomposed by microwave digestion in closed and open vessels as well as by digestion under reflux according to German standard. The use of different acids (HNO3, HCl or aqua regia) was evaluated and compared in respect to their influence on the determination of mercury by ET AAS and CV AAS. The digestion solutions were analyzed by ET AAS with a palladium modifier and by CV AAS using SnCl2 or NaBH4, as reducing agents. The detection limits obtained with different procedures were also evaluated. For the soil containing 6.25 g/g of Hg the ET AAS measurements were possible. In the case of lower concentration of mercury the CV AAS determination following the microwave digestion procedure with HCl or aqua regia is recommended. The accuracy of the proposed procedure was confirmed by the determination of total mercury in SRM 2711 Montana Soil.On leave from: Institut für Analytische Chemie, Technische Universitat Wien, Getreidemarkt 9, A-1060 Wien, Austria  相似文献   

12.
Capelo JL  Fernandez C  Pedras B  Santos P  Gonzalez P  Vaz C 《Talanta》2006,68(5):1442-1447
The field of selenium speciation has been studied for decades and the growing interest in this field seems never to reach a plateau. Although powerful techniques based on mass spectrometry are nowadays used for selenium determination/speciation, few laboratories can support the high cost of such techniques. The hyphenation of chromatography to atomic absorption or atomic fluorescence spectrometry (AAS or AFS) is still a reliable and low-cost alternative for routine laboratories. In this work we present the most important parameters dealing with selenium speciation along with the latest trends in this subject, namely in the items related with sample treatment and hyphenation techniques with AAS and AFS detection.  相似文献   

13.
Summary Atomic fluorescence (AFS), absorption (AAS) and emission (AES) systems were evaluated for the determination of inorganic mercury. Identical vapour generation and amalgamation procedures were used to permit direct comparison of the performance of a commercial long-path AAS instrument to laboratory constructed non-dispersive AFS as well as He-MIP based AES instruments. Instrumental noise-limited detection limits (LOD) were 0.94, 2.4, 2.8 pg for AAS, AES and AFS techniques, respectively. Methodological LOD's were found to be blank controlled and similar for all three instruments, viz. 9, 25 and 16 pg for AAS, AFS and AES, respectively. All three systems produced accurate results at the low ng/l concentration, as verified by the analysis of a certified river water reference material (NRCC ORMS-1).  相似文献   

14.
《Analytical letters》2012,45(14):2657-2669
Abstract

A simple and rapid method based on closed vessel microwave‐assisted extraction was developed to determine total, inorganic mercury and organomercury in biological tissues. Total mercury was extracted using HNO3:H2O2 (4:1) mixture. In a separate subsample, extraction of mercury species was carried out with tetramethylammonium hydroxide (TMAH). The total and inorganic mercury analyses were carried out by flow‐injection cold‐vapor atomic fluorescence spectrometry (FI‐CV‐AFS). The organomercury concentration was calculated by difference. Considering a sample amount of 0.2 g, the detection limits were 4 and 26 ng/g for total and inorganic mercury, respectively. The accuracy of the procedures was checked by analyzing certified reference materials and recovery studies of spiked fish tissues.  相似文献   

15.
Rahman L  Corns WT  Bryce DW  Stockwell PB 《Talanta》2000,52(5):833-843
A novel method for determination of Hg, Se, Bi, As and Sb based on microwave digestion followed by continuous flow vapour generation atomic fluorescence spectrometry was developed. The digestion for Hg was based on a two stage digestion involving HNO(3) and H(2)O(2), whilst for the hydride forming elements a common digestion using HCl and H(2)O(2) was found to be the most effective. The instrumentation and chemistry were optimised in order to provide the best accuracy and precision. The method detection limit for hair samples was found to be 0.2 ng g(-1) for Hg and between 2 and 10 ng g(-1) for the hydride forming elements. The atomic fluorescence detector showed excellent linearity over the concentration ranges studied with linear correlation co-efficients between 0.99984 and 0.99997. To validate the accuracy of the method a human hair certified reference material (GBW 0706) was analysed and excellent agreement with the certified value was obtained for all elements.  相似文献   

16.
Solid-phase extraction with two-step elution has been developed for effective elimination of copper and iron interference with mercury determination by flow-injection cold vapour atomic absorption spectrometry (CV AAS). Sodium tetrahydroborate(III) was used as reducing agent. Cation-exchanger Dowex 50Wx4 was applied for the sorption of mercury and both interfering ions. In the first step elution of Cu(II) and Fe(III) was performed using 0.5 mol L–1 KF solution. Then mercury was eluted with 0.1% thiourea in 8% HCl. The detection limit (3) for Hg(II) was 27 ng L–1. The expanded uncertainty estimated for the whole procedure was about 6%. The accuracy of the proposed method was evaluated by determination of the recovery of known amount of mercury added to mineral, spring, and tap waters, and by analysis of a certified reference material BCR-144R (sewage sludge).  相似文献   

17.
A method has been developed for the determination of total and organic mercury in biological materials and sediments. A microwave assisted mineralization of the organic mercury, after its extraction from the matrix, is described. This procedure warrants complete transformation of Hg(II) and, consequently, the quantitative reduction to Hg(0). The conditions for mercury reduction were optimized by a central composite design. The preconcentration of the analyte has been achieved by amalgamation on a trap system, consisting in a pyrolytic graphite platform wound by a gold wire. Mercury was determined by cold vapour atomic absorption spectrometry. The method was validated by the analysis of two certified reference materials and applied to the determination of total and organic mercury species in mussel tissues and sediments. The method is simple and practical, and offers the advantage of not requiring special equipment to measure inorganic and organic mercury simultaneously.  相似文献   

18.
Simple and rapid analytical procedures for the determination of Hg2+ and methylmercury in fish were proposed after careful optimization of chemical and instrumental parameters for Hg measurement by cold vapor (CV)/hydride generation (HG) atomic absorption spectrometry (AAS) and CV/HG inductively coupled plasma atomic emission spectrometry (ICP-AES). Quantitative extraction of Hg species avoiding any inter-species conversion was achieved by fast microwave assisted solubilization of fish tissue with relatively low amount of tetramethylammonium hydroxide (TMAH) or 6 mol L− 1 HCl. After careful optimization of chemical parameters selective determination of Hg2+ in the presence of excess of methylmercury is attained by using continuous flow CV AAS, 1% m/V SnCl2 as reductant and 0.1 mol L− 1 HCl as reaction medium. Simple calibration curve prepared with aqueous standard of Hg2+ is recommended for its quantification. Both Hg2+ and methylmercury could be determined simultaneously with equal sensitivity by CV/HG ICP-AES directly in the diluted TMAH solution obtained after extraction with 1% m/V NaBH4 as reductant. Quantification of the sum of Hg2+ and methylmercury against calibration curve prepared with aqueous standard of methylmercury is suggested. It should be mentioned that batch hydride generation system with quartz tube heated in air/acetylene flame could also be used for simultaneous determination of both Hg species in fish extracts, with standard additions calibration. The validity of the developed analytical procedures for selective determination of Hg2+ and methylmercury (by difference between the total Hg and Hg2+) is confirmed by the analyses of certified reference material DOLT-1 and reference material IMEP-20. Very close agreement between certified values and analytical results was found.  相似文献   

19.
A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry.

The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g−1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1–3.0 mg kg−1.  相似文献   


20.
A fully automated flow injection (FI) system utilizing the extraordinary oxidation power of bromine monochloride (BrCl) for the transformation of dissolved mercury species to Hg(2+) and oxidation of dissolved organic carbon (DOC) has been developed and coupled to cold vapor (CV) atomic fluorescence spectrometry (AFS) for highly sensitive mercury detection. The system can be applied to natural waters, sea water as well as freshwater and provides a detection limit as low as 16 pg Hg l(-1) from a sample volume of 7 ml. The relative standard deviation is about 4-10%. A 3-fold measurement of one sample is completely processed within 15 min. Dissolved organic carbon, chloride and iodide ions are tolerated in concentrations of 15 mg DOC l(-1), >21 g Cl(-)l(-1), and 10 mg I(-)l(-1). Validation of the proposed method yielded a good recovery of total mercury in a moorland water sample and in the certified reference material ORMS-3, river water. Investigation of eight real water samples with mercury concentrations in the range of 0.3-1.4 ng l(-1) also confirmed the suitability of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号