首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A common problem in real-world DEA applications is that all inputs and outputs may not be equally relevant to the organizations analysed and their stakeholders. In many cases, one is also faced with a data set where the decision-making units do not clearly outnumber the quantity of inputs and outputs. This study reports an application where DEA embellished with weight restrictions is used to analyse the efficiency of public organizations to overcome the above-mentioned problems. Whereas there are numerous documented applications of weight-restricted DEA in the literature, the process of defining the actual weight restrictions is seldom described. However, that part — defining the actual weights restrictions based on price, preference or value information — is the most difficult step involved in using the weight-restricted DEA. Comparing various weight restriction schemes with real data suggests that the ability to consider and include preference information in DEA adds important insights into the analysis.  相似文献   

2.
Cross-efficiency evaluation is a commonly used approach for ranking decision-making units (DMUs) in data envelopment analysis (DEA). The weights used in the cross-efficiency evaluation may sometimes differ significantly among the inputs and outputs. This paper proposes some alternative DEA models to minimize the virtual disparity in the cross-efficiency evaluation. The proposed DEA models determine the input and output weights of each DMU in a neutral way without being aggressive or benevolent to the other DMUs. Numerical examples are tested to show the validity and effectiveness of the proposed DEA models and illustrate their significant role in reducing the number of zero weights.  相似文献   

3.
This research further develops the combined use of principal component analysis (PCA) and data envelopment analysis (DEA). The aim is to reduce the curse of dimensionality that occurs in DEA when there is an excessive number of inputs and outputs in relation to the number of decision-making units. Three separate PCA–DEA formulations are developed in the paper utilising the results of PCA to develop objective, assurance region type constraints on the DEA weights. The first model applies PCA to grouped data representing similar themes, such as quality or environmental measures. The second model, if needed, applies PCA to all inputs and separately to all outputs, thus further strengthening the discrimination power of DEA. The third formulation searches for a single set of global weights with which to fully rank all observations. In summary, it is clear that the use of principal components can noticeably improve the strength of DEA models.  相似文献   

4.
The concept of efficiency in data envelopment analysis (DEA) is defined as weighted sum of outputs/weighted sum of inputs. In order to calculate the maximum efficiency score, each decision making unit (DMU)’s inputs and outputs are assigned to different weights. Hence, the classical DEA allows the weight flexibility. Therefore, even if they are important, the inputs or outputs of some DMUs can be assigned zero (0) weights. Thus, these inputs or outputs are neglected in the evaluation. Also, some DMUs may be defined as efficient even if they are inefficient. This situation leads to unrealistic results. Also to eliminate the problem of weight flexibility, weight restrictions are made in DEA. In our study, we proposed a new model which has not been published in the literature. We describe it as the restricted data envelopment analysis ((ARIII(COR))) model with correlation coefficients. The aim for developing this new model, is to take into account the relations between variables using correlation coefficients. Also, these relations were added as constraints to the CCR and BCC models. For this purpose, the correlation coefficients were used in the restrictions of input–output each one alone and their combination together. Inputs and outputs are related to the degree of correlation between each other in the production. Previous studies did not take into account the relationship between inputs/outputs variables. So, only with expert opinions or an objective method, weight restrictions have been made. In our study, the weights for input and output variables were determined, according to the correlations between input and output variables. The proposed new method is different from other methods in the literature, because the efficiency scores were calculated at the level of correlations between the input and/or output variables.  相似文献   

5.
Data envelopment analysis (DEA) is the leading technique for measuring the relative efficiency of decision-making units (DMUs) on the basis of multiple inputs and multiple outputs. In this technique, the weights for inputs and outputs are estimated in the best advantage for each unit so as to maximize its relative efficiency. But, this flexibility in selecting the weights deters the comparison among DMUs on a common base. For dealing with this difficulty, Kao and Hung (2005) proposed a compromise solution approach for generating common weights under the DEA framework. The proposed multiple criteria decision-making (MCDM) model was derived from the original non-linear DEA model. This paper presents an improvement to Kao and Hung's approach by means of introducing an MCDM model which is derived from a new linear DEA model.  相似文献   

6.
Data envelopment analysis (DEA) measures the production performance of decision-making units (DMUs) which consume multiple inputs and produce multiple outputs. Although DEA has become a very popular method of performance measure, it still suffers from some shortcomings. For instance, one of its drawbacks is that multiple solutions exist in the linear programming solutions of efficient DMUs. The obtained weight set is just one of the many optimal weight sets that are available. Then why use this weight set instead of the others especially when this weight set is used for cross-evaluation? Another weakness of DEA is that extremely diverse or unusual values of some input or output weights might be obtained for DMUs under assessment. Zero input and output weights are not uncommon in DEA. The main objective of this paper is to develop a new methodology which applies discriminant analysis, super-efficiency DEA model and mixed-integer linear programming to choose suitable weight sets to be used in computing cross-evaluation. An advantage of this new method is that each obtained weight set can reflect the relative strengths of the efficient DMU under consideration. Moreover, the method also attempts to preserve the original classificatory result of DEA, and in addition this method produces much less zero weights than DEA in our computational results.  相似文献   

7.
This paper is primarily concerned with data envelopment analysis (DEA) of systems where negative outputs and negative inputs arise naturally. Examples of situations in which both negative inputs and negative outputs occur are given. More attention has been paid, in the literature, to the former type of problem. Most available DEA software does not solve this type of problem or copes with negative outputs and possibly negative inputs by assigning zero weights to them. A modified slacks-based measure (MSBM) model is presented, in which both negative outputs and negative inputs occur. The MSBM model overcomes the lack of translation invariance in the slacks-based measure model by drawing on the ideas from the range directional model (RDM). The MSBM model takes into account individual input and output slacks, which provides more precise evaluation of inefficient decision-making units (DMUs). It therefore, generally leads to lower efficiencies for inefficient DMUs than the RDM.  相似文献   

8.
In this paper we present a method, based on the use of proportions, for restricting weight flexibility in data envelopment analysis. This method is applicable when the decision-making units being evaluated have multiple inputs and outputs.  相似文献   

9.
The flexibility of weights assigned to inputs and outputs is a key aspect of DEA modeling. However, excessive weight variability and implausible weight values have led to the development of DEA models that incorporate weight restrictions, reflecting expert judgment. This in turn has created problems of infeasibility of the corresponding linear programs. We provide an existence theorem that establishes feasibility conditions for DEA multiplier programs with weight restrictions. We then propose a linear model that tests for feasibility and a nonlinear model that provides minimally acceptable adjustments to the original restrictions that render the program feasible. The analysis can be applied to restrictions on weight ratios, or to restrictions on virtual inputs or outputs.  相似文献   

10.
An underlying assumption in DEA is that the weights coupled with the ratio scales of the inputs and outputs imply linear value functions. In this paper, we present a general modeling approach to deal with outputs and/or inputs that are characterized by nonlinear value functions. To this end, we represent the nonlinear virtual outputs and/or inputs in a piece-wise linear fashion. We give the CCR model that can assess the efficiency of the units in the presence of nonlinear virtual inputs and outputs. Further, we extend the models with the assurance region approach to deal with concave output and convex input value functions. Actually, our formulations indicate a transformation of the original data set to an augmented data set where standard DEA models can then be applied, remaining thus in the grounds of the standard DEA methodology. To underline the usefulness of such a new development, we revisit a previous work of one of the authors dealing with the assessment of the human development index on the light of DEA.  相似文献   

11.
This paper re-assesses three independently developed approaches that are aimed at solving the problem of zero-weights or non-zero slacks in Data Envelopment Analysis (DEA). The methods are weights restricted, non-radial and extended facet DEA models. Weights restricted DEA models are dual to envelopment DEA models with restrictions on the dual variables (DEA weights) aimed at avoiding zero values for those weights; non-radial DEA models are envelopment models which avoid non-zero slacks in the input-output constraints. Finally, extended facet DEA models recognize that only projections on facets of full dimension correspond to well defined rates of substitution/transformation between all inputs/outputs which in turn correspond to non-zero weights in the multiplier version of the DEA model. We demonstrate how these methods are equivalent, not only in their aim but also in the solutions they yield. In addition, we show that the aforementioned methods modify the production frontier by extending existing facets or creating unobserved facets. Further we propose a new approach that uses weight restrictions to extend existing facets. This approach has some advantages in computational terms, because extended facet models normally make use of mixed integer programming models, which are computationally demanding.  相似文献   

12.
It has been widely recognized that data envelopment analysis (DEA) lacks discrimination power to distinguish between DEA efficient units. This paper proposes a new methodology for ranking decision making units (DMUs). The new methodology ranks DMUs by imposing an appropriate minimum weight restriction on all inputs and outputs, which is decided by a decision maker (DM) or an assessor in terms of the solutions to a series of linear programming (LP) models that are specially constructed to determine a maximin weight for each DEA efficient unit. The DM can decide how many DMUs to be retained as DEA efficient in final efficiency ranking according to the requirement of real applications, which provides flexibility for DEA ranking. Three numerical examples are investigated using the proposed ranking methodology to illustrate its power in discriminating between DMUs, particularly DEA efficient units.  相似文献   

13.
Data envelopment analysis (DEA) is a powerful analytical tool in operations research and management for measuring and estimating the efficiency of decision-making units. Both the inputs and the outputs are assumed to be known constants in the classical DEA models. However, in many cases, those data (e.g., carbon emissions and social benefit) cannot be measured in a precise way. Therefore, in this article, the inputs and outputs are considered as uncertain variables and a new uncertain DEA model is introduced. The sensitivity and stability of the new model are also analyzed. Finally, a numerical example of the new model is documented.  相似文献   

14.
Data envelopment analysis (DEA), which is used to determine the efficiency of a decision-making unit (DMU), is able to recognize the amount of input congestion. Moreover, the relative importance of inputs and outputs can be incorporated into DEA models by weight restrictions. These restrictions or a priori weights are introduced by the decision maker and lead to changes in models and efficiency interpretation. In this paper, we present an approach to determine the value of congestion in inputs under the weight restrictions. Some discussions show how weight restrictions can affect the congestion amount.  相似文献   

15.
Data envelopment analysis (DEA) is designed to maximize the efficiency of a given decision-making unit (DMU) relative to all other DMUs by the choice of a set of input and output weights. One strength of the original models is the absence of any need of a priori information about the process of transforming inputs into outputs. However, in the practical application of DEA models, this strength has also become a weakness. Incorporation of process knowledge is more a norm than an exception in practice, and typically involves placing constraints on the input and/or output weights. New DEA formulations have evolved to address this issue. However, existing formulations for weight restrictions may underestimate relative efficiency or even render a problem infeasible. A new model formulation is introduced to address this issue. This formulation represents a significant improvement over existing DEA models by providing a generalized, comprehensive treatment for weight restrictions.  相似文献   

16.
In this paper, the inverse data envelopment analysis (DEA) with the preference of cone constraints will be discussed in a way that in the decision-making units, the undesirable inputs and outputs exist simultaneously. Supposing that the efficiency level does not change, if the unit under assessment increases the level of the desirable outputs and decreases the level of the undesirable outputs, how will it affect the amount of the desirable input level and the undesirable input level? To answer this question, the application of the inverse DEA with preference of cone constraints is suggested. The suggested approach, while maintaining the efficiency level, increases the level of its undesirable input and decreases the level of its desirable input by selection of strongly efficient solutions or some weakly efficient solutions of the multiple objective linear programming (MOLP) model. While maintaining the efficiency level, the suggested approach by selection of strongly efficient solution or some of the weakly efficient solutions of the MOLP model can increase the undesirable input level and decrease the desirable input level. Similarly, the suggested approach can be applied if the decision-making unit increases its undesirable input level and decreases the desirable input level so that the undesirable output level decreases and the desirable output level increases while maintaining the efficiency level. As an illustration, two numerical examples are rendered.  相似文献   

17.
Reducing weight flexibility has been suggested as a method for ensuring that the solution to data envelopment analyses do not give unreasonably low weightings to certain inputs or outputs. In this paper we extend the use of reducing weight flexibility and use it to model the effects of the decision-making unit's objectives on its efficiency relative to other DMUs with possibly different objectives. We show how such an approach can identify situations in which the weights imputed by a data envelopment analysis can be inconsistent with the decision-making weights used by the firm, and how this approach can be used to provide efficiency measures that are consistent with the DMU's own objectives. The method allows the analyst to distinguish between a decision-making unit's technological inefficiency and its inability to implement its own policies.  相似文献   

18.
The purpose of this study is to develop a new method which provides for given inputs and outputs the best common weights for all the units that discriminate optimally between the efficient and inefficient units as pregiven by the Data Envelopment Analysis (DEA), in order to rank all the units on the same scale. This new method, Discriminant Data Envelopment Analysis of Ratios (DR/DEA), presents a further post-optimality analysis of DEA for organizational units when their multiple inputs and outputs are given. We construct the ratio between the composite output and the composite input, where their common weights are computed by a new non-linear optimization of goodness of separation between the two pregiven groups. A practical use of DR/DEA is that the common weights may be utilized for ranking the units on a unified scale. DR/DEA is a new use of a two-group discriminant criterion that has been presented here for ratios, rather than the traditional discriminant analysis which applies to a linear function. Moreover, non-parametric statistical tests are employed to verify the consistency between the classification from DEA (efficient and inefficient units) and the post-classification as generated by DR/DEA.  相似文献   

19.
In this paper, we propose an approach to implement environmental standards into Data Envelopment Analysis (DEA) and in this way to measure their regulatory impact on eco-efficiency of firms. One standard feature of basic DEA models lies in the exogeneity of inputs, desirable and undesirable outputs. Taking into account the environmental constraints, we therefore apply the bounded variable DEA model. The regulatory impact is assessed as difference in eco-efficiency scores before and after fictive introduction of an environmental standard. Furthermore, we distinguish between weak and strong disposability of undesirable outputs and develop corresponding models. Assessing the regulatory impact of environmental standards in advance provides support for environmental policymakers in choosing appropriate instruments and in adjusting the intensity of regulation.  相似文献   

20.
Data envelopment analysis (DEA) is popularly used to evaluate relative efficiency among public or private firms. Most DEA models are established by individually maximizing each firm's efficiency according to its advantageous expectation by a ratio. Some scholars have pointed out the interesting relationship between the multiobjective linear programming (MOLP) problem and the DEA problem. They also introduced the common weight approach to DEA based on MOLP. This paper proposes a new linear programming problem for computing the efficiency of a decision-making unit (DMU). The proposed model differs from traditional and existing multiobjective DEA models in that its objective function is the difference between inputs and outputs instead of the outputs/inputs ratio. Then an MOLP problem, based on the introduced linear programming problem, is formulated for the computation of common weights for all DMUs. To be precise, the modified Chebychev distance and the ideal point of MOLP are used to generate common weights. The dual problem of this model is also investigated. Finally, this study presents an actual case study analysing R&D efficiency of 10 TFT-LCD companies in Taiwan to illustrate this new approach. Our model demonstrates better performance than the traditional DEA model as well as some of the most important existing multiobjective DEA models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号