首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
Pure fluorocarbonyl trifluoromethanesulfonate, FC(O)OSO(2)CF(3), is prepared in about 70% yield by the ambient-temperature reaction between FC(O)SCl and AgCF(3)SO(3). The geometric structure and conformational properties of the gaseous molecule have been studied by gas electron diffraction (GED), vibrational spectroscopy [IR(gas), IR(matrix), and Raman(liquid)] and quantum chemical calculations (HF, MP2, and B3LYP with 6-311G basis sets); in addition, the solid-state structure has been determined by X-ray crystallography. FC(O)OSO(2)CF(3) exists in the gas phase as a mixture of trans [FC(O) group trans with respect to the CF(3) group] and gauche conformers with the trans form prevailing [67(8)% from GED and 59(5)% from IR(matrix) measurements]. In both conformers the C=O bond of the FC(O) group is oriented synperiplanar with respect to the S-O single bond. The experimental free energy difference between the two forms, DeltaG degrees = 0.49(13) kcal mol(-1) (GED) and 0.22(12) kcal mol(-1) (IR), is slightly smaller than the calculated value (0.74-0.94 kcal mol(-1)). The crystalline solid at 150 K [monoclinic, P2(1)/c, a = 10.983(1) A, b = 6.4613(6) A, c = 8.8508(8) A, beta = 104.786(2) degrees ] consists exclusively of the trans conformer.  相似文献   

2.
The geometric structure and conformational properties of S-(fluoroformyl)O-(trifluoroacetyl) thioperoxide, FC(O)S-OC(O)CF3, were investigated by gas electron diffraction, matrix isolation infrared spectroscopy, and quantum chemical calculations (B3LYP with the 6-31G and aug-cc-pVTZ basis sets and MP2 with the 6-31G basis set). The experimental methods result in a mixture of two conformers with gauche conformation around the S-O bond. In the main conformer (82(7)% according to GED at 298 K), the C=O bond of the FC(O) group is oriented syn with respect to the S-O bond and phi(C-S-O-C) = 75(3) degrees . In the minor conformer (18(7)%), this C=O is oriented anti. Both conformers possess syn orientation of the C=O bond of the CF3C(O) group. The conformational properties and geometric parameters are reproduced reasonably well by the quantum chemical calculations, except for the S-O bond length, which is predicted too long by 0.04 A (B3LYP/aug-cc-pVTZ).  相似文献   

3.
Trifluorothioacetic acid-S-(trifluoromethyl)ester, CF3C(O)SCF3, was prepared by reacting CF3C(O)Cl and AgSCF3 at 50 degrees C. The compound was characterized by (13)C-, (19)F-NMR, UV, and vibrational spectroscopy as well as by gas electron diffraction (GED) and quantum chemical calculations (HF, MP2, and B3LYP methods 6-31G(d) and 6-311+G(2df) basis sets). GED and vibrational spectroscopy result in the presence of a single conformer with C1 symmetry and synperiplanar orientation of the S-CF3 bond relative to the CO bond. This result is in agreement with quantum chemical calculations which predict the anti conformer to be higher in energy by about 4 kcal/mol. An assignment of the IR (gas) and Raman (liquid) spectra is proposed, and the GED analysis results in the following skeletal geometric parameters (r(a) and angle(a) values with 3sigma uncertainties; these parameters are thermal averages and are not inconsistent with calculated equilibrium values): C=O = 1.202(6) A, C-C = 1.525(10) A, S-C(sp(2)) = 1.774(3) A, S-C(sp(3)) = 1.824 (3) A. O=C-C = 118.7(21) degrees, O=C-S = 127.1(15) degrees, C-S-C = 99.8 (13) degrees.  相似文献   

4.
The geometric structure and conformational properties of ((fluoroformyl)imido)(trifluoromethyl)sulfur fluoride, FC(O)N = S(F)CF3, are investigated by gas electron diffraction (GED) experiments, IR (gas) spectroscopy, and quantum chemical calculations (HF, MP2, and B3LYP with 6-31G* basis sets). The GED intensities are reproduced best with a mixture of 79(12)% trans-syn and 21(12)% cis-syn conformers. "Trans/cis" describes the orientation around the S=N double bond (FC(O) group relative to sulfur substituents), and "syn" refers to the orientation of the C=O bond relative to the S=N bond. From the intensities of the C=O bands in the IR (gas) spectrum, a composition of 86(8)%:14(8)% is derived. These ratios correspond to delta G0(GED) = 0.79(36) and delta G0(IR) = 1.09(35) kcal mol-1. The preference of a trans structure, around the S=N double bond is unexpected, since all imidosulfur compounds studied thus far possess a cis configuration. The conformational properties are reproduced qualitatively correctly by all theoretical calculations. The predicted energy differences delta E(HF) = 2.41, delta E(MP2) = 0.64, and delta E(B3LYP) = 0.28 kcal mol-1 are larger or slightly smaller than the experimental values. Additional theoretical calculations (B3LYP) for several imidosulfur compounds reveal that only FC(O)N=S(F)CF3, with mixed substitution at sulfur and the FC(O) group bonded to nitrogen, prefers the trans structure.  相似文献   

5.
Fluoroformyl trifluoroacetyl disulfide, FC(O)SSC(O)CF3, is prepared by quantitative reaction between FC(O)SCl and CF(3)C(O)SH. The conformational properties and geometric structure of the gaseous molecule have been studied by vibrational spectroscopy (IR(gas), Raman(liquid), IR(matrix)), gas electron diffraction (GED), and quantum chemical calculations (B3LYP and MP2 methods). The disulfide bond length derived from the GED analysis amounts 2.023(3) Angstroms, and the dihedral angle around this bond, phi(CS-SC), is 77.7(21) degrees, being the smallest dihedral angle measured for noncyclic disulfides in the gas phase. The compound exhibits a conformational equilibrium at room temperature having the most stable form C(1) symmetry with a synperiplanar (sp-sp) orientation of both carbonyl groups with respect to the disulfide bond. A second form was observed in IR spectra of the Ar matrix isolated compound at cryogenic temperatures, corresponding to a conformer that possess the carbonyl bond of the FC(O) moiety in antiperiplanar position with respect to the S-S single bond (ap-sp). A DeltaH degrees = - = 1.34(11) kcal/mol has been determined by IR(matrix) spectroscopy. The structure of single crystal of FC(O)SSC(O)CF3 was determinate by X-ray diffraction analysis at low temperature using a miniature zone melting procedure. The crystalline solid (monoclinic, P2(1)/n, a = 5.240(4)Angstroms, b = 23.319(17)Angstroms, c = 6.196(4)Angstroms, beta = 113.14(3) degrees) consists exclusively of the (sp-sp) conformation. The geometrical parameters agree with those obtained for the molecule in the gas phase.  相似文献   

6.
The geometric structure of malonamide, NH2C(O)-CH2-C(O)NH2, has been investigated by gas electron diffraction (GED) and quantum chemical calculations (B3LYP and MP2 approximations with 6-311++G(3df,pd) basis sets). Both GED and quantum chemistry result in the existence of a single diketo conformer in the gas phase. According to GED refinement this conformer possesses (sc,ac) conformation with one C=O bond in synclinal orientation (dihedral angle tau(O=C-C-C)=49.0(3.0) degrees) and the other C=O bond in anticlinal orientation (dihedral angle tau(O=C-C-C)=139.5(3.3) degrees). The experimental geometric parameters are reproduced very closely by the B3LYP method.  相似文献   

7.
Gas electron diffraction analysis on S-methyl thioacetate, CH3C(O)SCH3   总被引:1,自引:0,他引:1  
The molecular structure of S-methyl thioacetate, CH3C(O)SCH3, was determined by gas electron diffraction (GED) with the assistance of quantum chemical calculations (B3LYP/6-31G and MP2/6-31G). Experimental and theoretical methods result in a structure with syn conformation (C=O double bond syn with respect to the S-C(H3) single bond). The following skeletal geometric parameters were derived from the GED analysis (ra values with 3sigma uncertainties): C=O = 1.214(3), C-C = 1.499(5), S-C(sp2) = 1.781(6), S-C(sp3) = 1.805(6) angstroms, O=C-C = 123.4(8) degrees, O=C-S = 122.8(5) degrees and C-S-C = 99.2(9) degrees.  相似文献   

8.
Pure chlorocarbonyl trifluoromethanesulfonate, ClC(O)OSO(2)CF(3), has been prepared in about 58% yield by the ambient-temperature reaction between ClC(O)SCl and AgCF(3)SO(3). The conformational properties of the gaseous molecule have been studied by vibrational spectroscopy [IR(gas), IR(matrix), and Raman(liquid)] and quantum chemical calculations (HF and B3LYP with 6-31+G* basis sets); in addition, the solid-state structure has been determined by X-ray crystallography. ClC(O)OSO(2)CF(3) exists in the gas phase as a mixture of trans [ClC(O) group trans with respect to the CF(3) group] and gauche conformers, with the trans form being the more abundant [66(8)% from IR(matrix) measurements]. In both conformers, the C=O bond of the ClC(O) group is oriented synperiplanar with respect to the S-O single bond. The experimental free energy difference between the two forms, DeltaG degrees = 0.8(2) kcal mol(-1) (IR), is slightly smaller than the calculated value (1.0-1.5 kcal mol(-1)). The crystalline solid at 150 K [monoclinic, P2(1)/n, a = 7.3951(9) angstroms, b = 24.897(3) angstroms, c = 7.4812(9) angstroms, beta = 99.448(2) degrees, Z = 8] consists surprisingly of both trans and gauche forms. Whereas the more stable conformer for the more or less discrete molecules and the polarization effects would tend to favor the trans form, the packing effects would stabilize the gauche rotamer in the solid state.  相似文献   

9.
The molecular structure and conformational properties of N-pentafluorosulfur(sulfuroxide difluoride imide), SF5N=S(O)F2, have been studied by vibrational spectroscopy (IR (gas) and Raman (liquid)), by gas electron diffraction (GED), and by quantum chemical calculations (MP2 and B3LYP with (6-31G(d) and 6-311+G(2df) basis sets). According to GED, the prevailing conformer possesses a syn structure (N-SF5 bond synperiplanar with respect to the bisector of the SF2 group). Splitting of the symmetric N=S=O stretching vibration in gas and liquid spectra demonstrates the presence of a second conformer (11(5)%) with anticlinal orientation of the N-SF5 bond according to quantum chemical calculations. The geometric structure, conformational properties, and vibrational frequencies are well reproduced by quantum chemical calculations.  相似文献   

10.
The tautomeric and conformational properties of malonamic acid methyl ester, NH2C(O)-CH2-C(O)OCH3, have been investigated by means of gas-phase electron diffraction (GED) and quantum chemical calculations (HF, B3LYP, and MP2 approximations with different basis sets up to 6-311++G(3df,pd)). Both quantum chemistry and GED at 360(8) K result in the existence of a single diketo conformer in the gas phase. According to GED refinement, this conformer possesses an (ac, sc) conformation with dihedral angles C-C-C(NH2)=O of 140.3(3.0) degrees and C-C-C(OCH3)=O of 31.1(7.2) degrees. The experimental geometric parameters are reproduced very closely by MP2 and B3LYP methods with large basis sets.  相似文献   

11.
The geometric structure and conformational properties of trifluoromethyl chlorosulfonate (chlorosulfuric acid trifluoromethyl ester), CF(3)OSO(2)Cl, have been determined by X-ray crystallography, gas electron diffraction (GED), and vibrational spectroscopy (IR(gas), IR(matrix), and Raman(liquid)). These experimental investigations were supplemented by quantum chemical calculations (B3LYP with 6-311G* and 6-311+G(3df) basis sets). All experimental methods result in a single conformer with gauche orientation of the CF(3) group relative to the S[bond]Cl. The dihedral angle delta(COSCl) is determined to be 91.7(3) degrees in the crystal and 94(3) degrees in the gas phase. This dihedral angle corresponds to a near-eclipsed orientation of the O[bond]C relative to one of the S[double bond]O bonds (delta(CO[bond]SO) = -23.0(3) degrees and -21(3) degrees in the crystal and gas phase, respectively).  相似文献   

12.
The IR (gas) and Raman (liquid) spectra of FC(O)NSCl(2) demonstrate the presence of a conformational mixture in both phases. According to a gas electron diffraction study, the main conformer (94(8)%) possesses a syn-syn structure (C(O)F group synperiplanar with respect to the SCl(2) bisector and the C=O bond synperiplanar to the N=S bond). Quantum chemical calculations (HF, B3LYP and MP2 with 6-31G basis set, and MP2/6-311(2df)) predict a syn-anti structure for the second conformer. Analysis of the IR (gas) spectrum results in a contribution of 5(1)% of the minor form, corresponding to a Gibbs free energy difference DeltaG degrees = G degrees (syn-anti) - G degrees (syn-syn) = 1.75(15) kcal/mol. This value is reproduced very well by quantum chemical calculations, which include electron correlation effects (DeltaG degrees = 1.28-1.56 kcal/mol). The HF approximation overestimates this energy difference (DeltaG degrees = 3.24 kcal/mol).  相似文献   

13.
The geometric structure of dimethyl malonate, CH3OC(O)-CH2-C(O)OCH3, was studied by gas electron diffraction (GED) and quantum chemical methods. We conclude that only diketo conformers exist in the gas phase. According to the GED refinement, a mixture of two diketo conformers is present: 69(10)% (ac,ac) conformer with C2 symmetry (both CO bonds anticlinal relative to the opposite C-C bond) and 31(10)% (sp,ac) conformer with C1 symmetry (one CO bond with synperiplanar, the other CO bond with anticlinal orientation). Ab initio calculations, however, predict a preference of the (sp,ac) conformer rather than the (ac,ac) form.  相似文献   

14.
The geometric structure of trifluoroacetic anhydride, CF3C(O)OC(O)CF3, has been studied by gas electron diffraction (GED) and quantum chemical calculations (MP2 and B3LYP with 6-31G* basis sets). The GED analysis results in a single conformer with synperiplanar orientation of the two CO bonds. This analysis, however, cannot discriminate between a planar equilibrium structure (C2v symmetry) with large amplitude torsional motions around the OC bonds and a nonplanar equilibrium structure (C2 symmetry) with a low barrier at the planar arrangement. An effective dihedral angle φ(COCO=18(4)° is obtained. Both quantum chemical methods predict a nonplanar equilibrium structure of C2 symmetry and φ(COCO)=16.5° and 13.9°, respectively.  相似文献   

15.
[structure: see text] The molecular structure and conformational properties of dimethyl monothiocarbonate, CH3OC(O)SCH3, have been studied in the gas phase by gas electron diffraction (GED) and vibrational spectroscopy and in the solid state by X-ray crystallography. The experimental investigations were supplemented by quantum chemical calculations at the B3LYP/6-311++G(3df,2p) and MP2/6-311++G(2df,p) levels of approximation. The gaseous molecule exhibits only one conformation having Cs symmetry with synperiplanar orientation of both the C-S and the C-O single bonds relative to the C=O double bond. The following skeletal geometric parameters were derived from the GED analysis (r(hl) values with 3sigma uncertainties): C=O = 1.203(4) A, C(sp(2))-O = 1.335(5) A, C(sp(3))-O = 1.437(5) A, C(sp(2))-S = 1.763(5) A, and C(sp(3))-S = 1.803(5) A; O=C-O = 125.9(8) degrees , O=C-S = 125.7(7) degrees , O-C-S = 108.4(9) degrees , and C-O-C = 113.4(15) degrees . The structure of a single crystal, grown by a miniature zone-melting procedure, was determined by X-ray diffraction analysis at a low temperature. The crystalline solid [monoclinic, P2(1)/n, a = 12.6409(9) A, b = 4.1678(3) A, and c = 19.940(1) A, beta = 98.164(1) degrees ] exists exclusively as molecules in the synperiplanar conformation and with geometrical parameters that agree with those of the molecule in the gas phase. The results are discussed in terms of anomeric and mesomeric effects and in terms of a natural bond orbital analysis.  相似文献   

16.
The conformational properties of gaseous trichloromethyl chloroformate (or "diphosgene"), ClC(O)OCCl3, have been studied by vibrational spectroscopy [IR (gas), IR (matrix), and Raman (liquid)] and quantum chemical calculations (MP2 and B3LYP with 6-311G basis sets); in addition, the structure of a single crystal at low temperature has been determined by X-ray diffraction. ClC(O)OCCl3 exhibits only one conformational form having Cs symmetry with a synperiplanar orientation of the C-O single bond relative to the C=O double bond. The calculated energy difference between the syn and anti forms, 5.73 kcal mol(-1) (B3LYP) or 7.06 kcal mol(-1) (MP2), is consistent with the experimental findings for the gas and liquid phases. The crystalline solid at 150 K [monoclinic, P2(1)/n, a = 5.5578(5) angstroms, b = 14.2895(12) angstroms, c = 8.6246(7) angstroms, beta = 102.443(2) degrees, Z = 4] likewise consists only of molecules in the syn form.  相似文献   

17.
Pure methoxycarbonylsulfenyl isocyanate, CH3OC(O)SNCO, is quantitatively prepared by the metathesis reaction between CH3OC(O)SCl and AgNCO. This novel species has been obtained in its pure form and characterized by 1H and 13C NMR, UV-vis, FTIR, and FT-Raman spectroscopy. The conformational properties of the gaseous molecule have been studied by vibrational spectroscopy and quantum chemical calculations (B3LYP and MP2 methods). The compound exhibits a conformational equilibrium at room temperature having the most stable form CS symmetry with the C=O double bond synperiplanar with respect to the S-N single bond. A second form was observed in the IR spectrum and corresponds to a conformer possessing the C-S bond antiperiplanar with respect to the N=C double bond of the isocyanate group. The structure of a single crystal of CH3OC(O)SNCO was determined by X-ray diffraction analysis at low temperature using a miniature zone melting procedure. The crystalline solid (triclinic, P1, a = 8.292(6) A, b = 9.839(7) A, c = 11.865(8) A, alpha = 67.290(2) degrees , beta = 71.5570(10) degrees , gamma = 83.4850(10) degrees and Z = 6) shows the presence of molecules having exclusively a synperiplanar conformation with respect to the three phi(CO-C=O), phi(O=C-SN), and phi(CS-N=C) dihedral angles.  相似文献   

18.
Trichloromethanesulfenyl acetate, CCl 3SOC(O)CH 3, belongs to the family of sulfenic esters. This molecule has been characterized by vibrational spectroscopy. The conformational and geometrical properties of this species have been determined by IR and Raman spectroscopy, X-ray diffraction, and quantum chemical calculations. Geometry optimizations of the most stable forms were performed with ab initio (HF, MP2) and density functional theory (B3LYP) methods. According to our data, this compound results in a gauche-syn conformer with C 1 symmetry (gauche orientation around the S-O bond and syn orientation of the CO double bond with respect to the S-O single bond) for the most stable geometry, and trans-syn conformer with C s symmetry (trans orientation around the S-O bond and syn orientation of the CO double bond with respect to the S-O single bond) for the second stable conformer (1.1 and 0.53 kcal/mol higher in energy than the most stable C 1 form according to the matrix FTIR spectroscopy and MP2/6-31G* level of the theory, respectively). The crystalline solid (monoclinic, P2 1/ n, a = 8.0152(17) A, b = 5.7922(13) A, c = 17.429(4) A, alpha = gamma = 90 degrees , beta = 100.341(3) degrees ) consists exclusively of the main form. The geometrical parameters (X-ray diffraction) are d C-Cl = 1.767(19) A, d C-S = 1.797(2) A, d S-O = 1.663(14) A, d CO = 1.189(2) A, d O-C = 1.389(3) A, d C-C = 1.483(3) A, angles Cl-C-Cl = 110.3(11) degrees , Cl-C-S = 111.8(12) degrees , C-S-O = 97.4(8) degrees , S-O-C = 116.7(11) degrees , O-CO = 122.8(19) degrees , OC-C = 127.1(2) degrees , and the main torsion angles are delta(CSOC) = 105.9(15) degrees and delta(SOC(O)) = 7.6(3) degrees . The geometrical data calculated with B3LYP/6-31G++(3df,3pd), B3LYP/6-311G++(3df,3pd), B3LYP/aug-cc-pVTZ, and MP2/6-31G* are in good agreement with diffraction data.  相似文献   

19.
Structural, conformational, and configurational properties of the gaseous molecule ((fluoroformyl)imido)sulfuryl difluoride, FC(O)N=S(O)F(2), have been studied by vibrational spectroscopy (IR (gas) and Raman (liquid)) and quantum chemical calculations (HF, MP2, and B3LYP with 6-31+G* and 6-311+G* basis sets); in addition, the solid-state structure has been determined by X-ray crystallography. FC(O)N=S(O)F(2) exists in the gas phase as a mixture of a favored antiperiplanar-synperiplanar form (the S=O double bond antiperiplanar with respect to the C-N single bond, and the C=O group synperiplanar with respect to the S=N double bond) in equilibrium with less abundant antiperiplanar-antiperiplanar, synclinal-synperiplanar, and synclinal-antiperiplanar structures. The crystalline solid at 163 K (monoclinic, P2(1)/c, a = 5.1323(7) A, b = 15.942(2) A, c = 16.798(2) A, beta = 95.974(3) degrees , Z = 12) consists of three similar antiperiplanar-synperiplanar forms.  相似文献   

20.
Fluorocarbonyl thio- and isothiocyanate, FC(O)SCN and FC(O)NCS, were fully characterized by IR (gas, Ar and N(2) matrixes), Raman (liquid and solid), UV (gas), and (13)C NMR (liquid) spectroscopy, as well as single-crystal X-ray diffraction. Their vibrational and conformational properties were analyzed using matrix isolation techniques guided by quantum chemical calculation at the ab initio [MP2 and CCSD(T)], density functional theory B3LYP, and CBS-QB3 levels of theory. A complete assignment of the fundamental modes of FC(O)SCN was performed. In both the gas and liquid states, FC(O)SCN and FC(O)NCS were found to exist as two conformers (C(s) symmetry), in which the carbonyl double bond (C═O) adopts a synperiplanar (syn) and an antiperiplanar (anti) orientation with respect to either the SCN or NCS group. For FC(O)SCN, the conformational enthalpy difference, ΔH° = H°(anti) - H°(syn), was determined by matrix IR experiments to be 0.9 ± 0.2 kcal mol(-1). The conformational equilibria were evaluated by fast-cooling gaseous samples highly diluted in argon at different temperatures as cryogenic matrixes. The conformational properties of both molecules were analyzed in terms of the hyperconjugative electronic effect applying the natural bond orbital method. The kinetics of the thermal conversion of the high-energy anti into the syn FC(O)NCS conformer was studied in Ar and N(2) matrixes at cryogenic temperatures. The reversed syn → anti photoisomerization was observed using UV-vis light. Rearrangement of FC(O)SCN into FC(O)NCS was observed in the neat liquid and in solution. Under 193 nm (ArF excimer laser) irradiation, FC(O)NCS isolated in cryogenic Ar matrixes forms FC(O)SCN. At low temperature, single crystals of the two constitutional isomers were obtained using a miniature zone melting procedure. According to X-ray diffraction, they exclusively crystallize in their syn forms (C(s) symmetry) in the orthorhombic crystal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号