首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The linear semidefinite programming problem is considered. The dual affine scaling method in which all current iterations belong to the feasible set is proposed for its solution. Moreover, the boundaries of the feasible set may be reached. This method is a generalization of a version of the affine scaling method that was earlier developed for linear programs to the case of semidefinite programming.  相似文献   

2.
We study convergence properties of Dikin’s affine scaling algorithm applied to nonconvex quadratic minimization. First, we show that the objective function value either diverges or converges Q-linearly to a limit. Using this result, we show that, in the case of box constraints, the iterates converge to a unique point satisfying first-order and weak second-order optimality conditions, assuming the objective function Hessian Q is rank dominant with respect to the principal submatrices that are maximally positive semidefinite. Such Q include matrices that are positive semidefinite or negative semidefinite or nondegenerate or have negative diagonals. Preliminary numerical experience is reported.  相似文献   

3.
We study convergence properties of Dikins affine scaling algorithm applied to nonconvex quadratic minimization. First, we show that the objective function value either diverges or converges Q-linearly to a limit. Using this result, we show that, in the case of box constraints, the iterates converge to a unique point satisfying first-order and weak second-order optimality conditions, assuming the objective function Hessian Q is rank dominant with respect to the principal submatrices that are maximally positive semidefinite. Such Q include matrices that are positive semidefinite or negative semidefinite or nondegenerate or have negative diagonals. Preliminary numerical experience is reported.  相似文献   

4.
We give a complete characterization of constant quadratic functions over an affine variety. This result is used to convexify the objective function of a general quadratic programming problem (Pb) which contains linear equality constraints. Thanks to this convexification, we show that one can express as a semidefinite program the dual of the partial Lagrangian relaxation of (Pb) where the linear constraints are not relaxed. We apply these results by comparing two semidefinite relaxations made from two sets of null quadratic functions over an affine variety.   相似文献   

5.
The primal-dual Dikin-type affine scaling method was originally proposed for linear optimization and then extended to semidefinite optimization. Here, the method is generalized to symmetric conic optimization using the notion of Euclidean Jordan algebras. The method starts with an interior feasible but not necessarily centered primal-dual solution, and it features both centering and reducing the duality gap simultaneously. The method’s iteration complexity bound is analogous to the semidefinite optimization case. Numerical experiments demonstrate that the method is viable and robust when compared to SeDuMi, MOSEK and SDPT3.  相似文献   

6.
We consider the continuous trajectories of the vector field induced by the primal affine scaling algorithm as applied to linear programming problems in standard form. By characterizing these trajectories as solutions of certain parametrized logarithmic barrier families of problems, we show that these trajectories tend to an optimal solution which in general depends on the starting point. By considering the trajectories that arise from the Lagrangian multipliers of the above mentioned logarithmic barrier families of problems, we show that the trajectories of the dual estimates associated with the affine scaling trajectories converge to the so called centered optimal solution of the dual problem. We also present results related to asymptotic direction of the affine scaling trajectories. We briefly discuss how to apply our results to linear programs formulated in formats different from the standard form. Finally, we extend the results to the primal-dual affine scaling algorithm.  相似文献   

7.
The problem of minimizing the rank of a symmetric positive semidefinite matrix subject to constraints can be cast equivalently as a semidefinite program with complementarity constraints (SDCMPCC). The formulation requires two positive semidefinite matrices to be complementary. This is a continuous and nonconvex reformulation of the rank minimization problem. We investigate calmness of locally optimal solutions to the SDCMPCC formulation and hence show that any locally optimal solution is a KKT point. We develop a penalty formulation of the problem. We present calmness results for locally optimal solutions to the penalty formulation. We also develop a proximal alternating linearized minimization (PALM) scheme for the penalty formulation, and investigate the incorporation of a momentum term into the algorithm. Computational results are presented.  相似文献   

8.
《Optimization》2012,61(6):715-738
In this article, a nonlinear semidefinite program is reformulated into a mathematical program with a matrix equality constraint and a sequential quadratic penalty method is proposed to solve the latter problem. We discuss the differentiability and convexity of the penalty function. Necessary and sufficient conditions for the convergence of optimal values of penalty problems to that of the original semidefinite program are obtained. The convergence of optimal solutions of penalty problems to that of the original semidefinite program is also investigated. We show that any limit point of a sequence of stationary points of penalty problems satisfies the KKT optimality condition of the semidefinite program. Smoothed penalty problems that have the same order of smothness as the original semidefinite program are adopted. Corresponding results such as the convexity of the smoothed penalty function, the convergence of optimal values, optimal solutions and the stationary points of the smoothed penalty problems are obtained.  相似文献   

9.
We consider an extension of the affine scaling algorithm for linear programming problems with free variables to problems having infinitely many constraints, and explore the relationship between this algorithm and the finite affine scaling method applied to a discretization of the problem.This material is based on research supported by Air Force Office of Scientific Research Grant AFOSR 89-0410.  相似文献   

10.
In this paper, we propose an infeasible-interior-point algorithm for linear programning based on the affine scaling algorithm by Dikin. The search direction of the algorithm is composed of two directions, one for satisfying feasibility and the other for aiming at optimality. Both directions are affine scaling directions of certain linear programming problems. Global convergence of the algorithm is proved under a reasonable nondegeneracy assumption. A summary of analogous global convergence results without any nondegeneracy assumption obtained in [17] is also given.  相似文献   

11.
In this article, an affine scaling interior trust-region algorithm which employs backtracking line search with filter technique is presented for solving nonlinear equality constrained programming with nonnegative constraints on variables. At current iteration, the general full affine scaling trust-region subproblem is decomposed into a pair of trust-region subproblems in vertical and horizontal subspaces, respectively. The trial step is given by the solutions of the pair of trust-region subproblems. Then, the step size is decided by backtracking line search together with filter technique. This is different from traditional trust-region methods and has the advantage of decreasing the number of times that a trust-region subproblem must be resolved in order to determine a new iteration point. Meanwhile, using filter technique instead of merit function to determine a new iteration point can avoid the difficult decisions regarding the choice of penalty parameters. Under some reasonable assumptions, the new method possesses the property of global convergence to the first-order critical point. Preliminary numerical results show the effectiveness of the proposed algorithm.  相似文献   

12.
We extend the classical affine scaling interior trust region algorithm for the linear constrained smooth minimization problem to the nonsmooth case where the gradient of objective function is only locally Lipschitzian. We propose and analyze a new affine scaling trust-region method in association with nonmonotonic interior backtracking line search technique for solving the linear constrained LC1 optimization where the second-order derivative of the objective function is explicitly required to be locally Lipschitzian. The general trust region subproblem in the proposed algorithm is defined by minimizing an augmented affine scaling quadratic model which requires both first and second order information of the objective function subject only to an affine scaling ellipsoidal constraint in a null subspace of the augmented equality constraints. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions where twice smoothness of the objective function is not required. Applications of the algorithm to some nonsmooth optimization problems are discussed.  相似文献   

13.
Abstract. We present a deterministic polynomial-time algorithm that computes the mixed discriminant of an n -tuple of positive semidefinite matrices to within an exponential multiplicative factor. To this end we extend the notion of doubly stochastic matrix scaling to a larger class of n -tuples of positive semidefinite matrices, and provide a polynomial-time algorithm for this scaling. As a corollary, we obtain a deterministic polynomial algorithm that computes the mixed volume of n convex bodies in R n to within an error which depends only on the dimension. This answers a question of Dyer, Gritzmann and Hufnagel. A ``side benefit' is a generalization of Rado's theorem on the existence of a linearly independent transversal.  相似文献   

14.
We introduce and study two-stage stochastic symmetric programs with recourse to handle uncertainty in data defining (deterministic) symmetric programs in which a linear function is minimized over the intersection of an affine set and a symmetric cone. We present a Benders’ decomposition-based interior point algorithm for solving these problems and prove its polynomial complexity. Our convergence analysis proved by showing that the log barrier associated with the recourse function of stochastic symmetric programs behaves a strongly self-concordant barrier and forms a self-concordant family on the first stage solutions. Since our analysis applies to all symmetric cones, this algorithm extends Zhao’s results [G. Zhao, A log barrier method with Benders’ decomposition for solving two-stage stochastic linear programs, Math. Program. Ser. A 90 (2001) 507–536] for two-stage stochastic linear programs, and Mehrotra and Özevin’s results [S. Mehrotra, M.G. Özevin, Decomposition-based interior point methods for two-stage stochastic semidefinite programming, SIAM J. Optim. 18 (1) (2007) 206–222] for two-stage stochastic semidefinite programs.  相似文献   

15.
Based on a differentiable merit function proposed by Taji et al. in "Math. Prog. Stud., 58, 1993, 369-383", the authors propose an affine scaling interior trust region strategy via optimal path to modify Newton method for the strictly monotone variational inequality problem subject to linear equality and inequality constraints. By using the eigensystem decomposition and affine scaling mapping, the authors form an affine scaling optimal curvilinear path very easily in order to approximately solve the trust region subproblem. Theoretical analysis is given which shows that the proposed algorithm is globally convergent and has a local quadratic convergence rate under some reasonable conditions.  相似文献   

16.
An exact algorithm is presented for solving edge weighted graph partitioning problems. The algorithm is based on a branch and bound method applied to a continuous quadratic programming formulation of the problem. Lower bounds are obtained by decomposing the objective function into convex and concave parts and replacing the concave part by an affine underestimate. It is shown that the best affine underestimate can be expressed in terms of the center and the radius of the smallest sphere containing the feasible set. The concave term is obtained either by a constant diagonal shift associated with the smallest eigenvalue of the objective function Hessian, or by a diagonal shift obtained by solving a semidefinite programming problem. Numerical results show that the proposed algorithm is competitive with state-of-the-art graph partitioning codes.  相似文献   

17.
In this paper, an approximate augmented Lagrangian function for nonlinear semidefinite programs is introduced. Some basic properties of the approximate augmented Lagrange function such as monotonicity and convexity are discussed. Necessary and sufficient conditions for approximate strong duality results are derived. Conditions for an approximate exact penalty representation in the framework of augmented Lagrangian are given. Under certain conditions, it is shown that any limit point of a sequence of stationary points of approximate augmented Lagrangian problems is a KKT point of the original semidefinite program and that a sequence of optimal solutions to augmented Lagrangian problems converges to a solution of the original semidefinite program.  相似文献   

18.
In this paper we extend and improve the classical affine scaling interior-point Newton method for solving nonlinear optimization subject to linear inequality constraints in the absence of the strict complementarity assumption. Introducing a computationally efficient technique and employing an identification function for the definition of the new affine scaling matrix, we propose and analyze a new affine scaling interior-point Newton method which improves the Coleman and Li affine sealing matrix in [2] for solving the linear inequlity constrained optimization. Local superlinear and quadratical convergence of the proposed algorithm is established under the strong second order sufficiency condition without assuming strict complementarity of the solution.  相似文献   

19.
We present in this paper an improved estimation of duality gap between binary quadratic program and its Lagrangian dual. More specifically, we obtain this improved estimation using a weighted distance measure between the binary set and certain affine subspace. We show that the optimal weights can be computed by solving a semidefinite programming problem. We further establish a necessary and sufficient condition under which the weighted distance measure gives a strictly tighter estimation of the duality gap than the existing estimations.  相似文献   

20.
For multiparametric convex nonlinear programming problems we propose a recursive algorithm for approximating, within a given suboptimality tolerance, the value function and an optimizer as functions of the parameters. The approximate solution is expressed as a piecewise affine function over a simplicial partition of a subset of the feasible parameters, and it is organized over a tree structure for efficiency of evaluation. Adaptations of the algorithm to deal with multiparametric semidefinite programming and multiparametric geometric programming are provided and exemplified. The approach is relevant for real-time implementation of several optimization-based feedback control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号