首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Noncovalent complex formation between a tetramesityl sulfonated tetramethyl resorcarene and primary, secondary, and tertiary alkylammonium ions was investigated by electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Competition measurements, collision-induced dissociation, and gas-phase hydrogen/deuterium (H/D)-exchange reactions were employed to elucidate the interactions involved in complexation, the stability of the complexes, and the position of the guest with relation to the resorcarene. The complex formation ability of tetramesityl sulfonated resorcarene and the stability of the compexes were compared with the corresponding properties of tetratosylium tetraethyl resorcarene, which has been studied previously. Complex formation and the properties of the complexes were most strongly determined by the steric properties of the guests and their ability to form hydrogen bonds. Comparison of the two host molecules revealed the impact of steric hindrance in tetramesityl sulfonated tetramethyl resorcarene.  相似文献   

2.
The complex formation of a tetraammonium C1-resorcinarene (R+4HCl) was studied using electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. Although R+4HCl easily loses its counter ions in the ESI process, a neutral self-assembled structure with an intramolecular circular hydrogen-bonded 16-membered -N(+)-H ... X(-) ... H-N(+)- array with ammonium ion as the charge-giving species was observed in the gas phase. In addition to chloride, several other counter ions were also studied. The size and basicity of the counter ion as well as the size of the charge-giving cation strongly affected the gas-phase stability of the self-assembled system. H/D exchange experiments showed that the ammonium substituents in the apical position of R affect the hydrogen-bonding system in the resorcinarene. The complexation of the saturated dicarboxylic acids was found to depend on the length of the carbon chain. The rigidity of the molecular skeleton of the acid improved the complexation considerably. The orientation and position of the carboxylic groups also had an effect on the complexation and consequently enabled stereochemical differentiation of the acids. Mass spectrometric observations were supported by theoretical calculations.  相似文献   

3.
The ammonium ion binding affinities of tetraethyl resorcarene (1) and its per-methylated derivative (2) were studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. Ten different ammonium ions were tested as guests for the resorcarenes. A strong tendency for complex formation was observed with all ammonium ions of size and charge distribution suitable for noncovalent interactions with the cavities of the resorcarene hosts 1 and 2. Although differences in ammonium ion affinities were observed between 1 and 2 due to the dissimilar conformations, the overall tendency was that increase in the degree of substitution and the length of carbon chain of the ammonium cation facilitated the complex formation until the sterical hindrance impeded the complexation. Dimeric as well as monomeric ammonium ion complexes were formed with resorcarene 1, but resorcarene 2 was unable to form the dimeric capsules because of the lack of H-bond donor possibilities. The nature of binding of the guest was further investigated with ion-molecule reactions and by determination of the single crystal X-ray structure of host 1 complexed with tetramethyl ammonium bromide.  相似文献   

4.
The H-bonding in alkylammonium complexes of phosphonate cavitands were studied by mass spectrometric methods and theoretical calculations. The alkylammonium ions included primary, secondary, and tertiary methyl- and ethylammonium ions. Their complexation with mono-, tetra-, and two di-phosphonate cavitands, which differ according to the number and position of H-bond acceptor P = O groups, was evaluated by using different competition experiments, energy-resolved CID, gas-phase H/D-exchange, and ligand-exchange reactions, together with ab initio theoretical optimization of the complexes. The phosphonate cavitands with two or more adjacent P = O groups were found to be selective towards secondary alkylammonium ions, due to simultaneous formation of two stable hydrogen bonds. In the ion-molecule reactions (both H/D- and ligand-exchange), the formation of two stable hydrogen bonds was observed either to slow down the reaction or to completely prevent it. This was, however, limited to situations where two hydrogen bonds are formed between the H-bond donor sites of the alkyl ammonium ion and the vicinal H-bond acceptor sites of the cavitand.  相似文献   

5.
The pure base calorimetric method has been used to determine the enthalpies of hydrogen bond complex formation between aliphatic amines and alcohols. The enthalpies of complexation for the series methanol-n-butanol bonding with triethylamine increase with decreasing alkyl chain length in accordance with the electron donating properties of alkyl groups. Unexpectedly, the enthalpies for the complexes of n-butanol with tributylamine, tripropylamine, and triethylamine increase with decreasing alkyl chain length.Primary and secondary amines form hydrogen bonded complexes with n-butanol in which the amine protons form an NH···O bond with the alcohol and the alcohol hydroxyl proton donates a proton to the amine nitrogen. The difference in enthalpy of complex formation between tertiary amines and secondary amines is largely accounted for by the involvement of the amine proton of the secondary amine. Primary amines, like secondary amines, donate only one proton to the complex with n-butanol but have a larger complex enthalpy than secondary amines probably because of steric hindrance and differences in basicity.  相似文献   

6.
Noncovalent complexation between tetratosylated tetraethyl resorcarene (1) and primary, secondary, and tertiary alkyl ammonium ions (mMe, dMe, tMe, mEt, dEt, tEt, dBu, and dHex) was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. Interactions of the noncovalent complexes were investigated by means of competition experiments, collision-induced dissociation (CID) experiments, ion-molecule reactions with tripropylamine and gas phase H/D-exchange reactions with deuteroammonia. Gas phase ion-molecule reactions gave especially valuable information about the structure and properties of the complexes. Resorcarene 1 formed relatively stable 1:1 complexes with all aliphatic alkyl ammonium ions. Steric properties of the alkyl ammonium ions and proton affinities of the conjugate amines noticeably affected the complexation properties, indicating the importance of hydrogen bonding in these complexes. According to the competition experiments, the thermodynamically most stable host-guest complexes were formed with alkyl ammonium ions that were most substituted and had the longest alkyl chains. In CID experiments, release of an intact free guest ion or dissociation of the host was observed to depend on the proton affinity of the amine and the strength of the hydrogen bond that was formed. In ion-molecule reactions with tripropylamine, a guest exchange reaction occurred with all alkyl ammonium ion complexes with reaction rates mostly dependent on the steric properties of the original guest ion. In H/D-exchange reactions the N-H hydrogen atoms of the guest ion were exchanged with deuterium, whereas the resorcinol hydrogen atoms remained unchanged.  相似文献   

7.
The formation of tetrahedral cobalt(II) thiocyanate complexes in aqueous solutions of nonionogenic surfactants was studied using electronic spectroscopy. The equilibrium constants were calculated in the framework of different schemes of complexation reactions. The influence of such factors as the oxyethylene chain length and the size of the alkyl substituent of the surfactant on the stability of the complexes was examined.  相似文献   

8.
The ability of tetratosylated resorcarene to form complexes with aromatic ammonium ions was investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The formation of noncovalent complexes, [1+guest]+ and [1 · 1+guest]+, as observed with singly charged aromatic anilinium and phenylene aminoammonium guests. Comparison of the complexation efficiencies of the aromatic and aliphatic ammonium ions showed the importance of proton affinity of conjugate amines in complex formation. In collision‐induced dissociation experiments, gas‐phase stability was found to be lower for complexes formed with aromatic ions and this behavior was not found to depend on the proton affinity of conjugate amines. Fast oxidation of the para and ortho aminoammonium ions and complexation of these ions with tetratosylated resorcarene was observed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The reactions occurring between a new class of cavitands that carry up to four dioxaphosphocin binding units and alkyl- and arylammonium ions was investigated by liquid secondary-ion mass spectrometry (LSIMS). As the cavitands existed as distinct diastereomers with different spatial orientation of their binding groups, these geometrical differences proved to have a dramatic influence on their chemical properties, including their ability to form host-guest complexes. In practice, only the cavitands that carry at least three P=O groups oriented toward the inside of the cavity were demonstrated to be strong ligands toward organic ammonium ions, whereas those with only two converging binding groups (either adjacent or opposite in the cavitand structure) still formed host-guest complexes, but they were much weaker. Adjacent binding sites proved to be more effective in interacting with organic ammonium ions than those lying in opposite positions. The isomers with no converging P=O groups did not act as molecular receptors. Even the isomer with one group oriented toward the inside of the cavity did not form host-guest complexes, as the absence of synergistic hydrogen bonding made the interaction from inside the cavity energetically equivalent (or even less favorable) to the outside binding. The presence in the cavitand structure of substituents with an electron-donating character proved to increase the proton affinity of the P=O binding groups and, consequently, their binding energy. The strong proton affinity of the cavitands led to the formation of stable host-guest complexes, as confirmed by the collisionally activated dissociation experiments. Effects of steric hindrance were weak, at least for the cavitands with three converging P=O groups. This confirmed that the cavity has a wide and readily accessible opening. The relative complexation constants were measured for the various guests, yielding scales of relative affinity toward each cavitand. These relative constants may represent thermodynamic values referred to the matrix used in LSIMS experiments, namely 3-nitrobenzyl alcohol (NBA), provided that kinetically controlled selvedge processes are negligible. Absolute complexation constants could not be obtained on account of the unknown pH and the protonation constant in the NBA matrix.  相似文献   

10.
Cyclodextrin complexation decreases the apparent lipophilicity of hydrophobic guest molecules. A higher complex stability results in a larger decrease of lipophilicity as determined by reversed-phase thin-layer chromatography. The method was applied to study the complex formation of 33 nitrostyrene derivatives with a water soluble cross linked -cyclodextrin polymer (weight average molecular weight: 4300). The substituents in thepara position of the benzene ring had a higher impact on the complex stability than those in themeta andortho positions. The substituents on the alkyl side chain influenced the complex stability to the same extent as those on the benzen ring.  相似文献   

11.
Resorcarene derivatives, negatively charged even at moderate pH, were synthesized and employed as pseudostationary phases to achieve mobilities exceeding that of the electroosmotic flow. Under these conditions, a discontinuous electrolyte system was developed which allows the separation of four uncharged homologous 4-hydroxybenzoic esters (parabens) within a zone of resorcarene electrolyte, and the detection of these UV active compounds in a resorcarene-free zone, free from the high UV background absorbance of the resorcarenes. Resorcarenes, with differently charged functionalities (carboxylate and phosphate groups) to provide the electrophoretic mobility and with alkyl residues of different chain lengths responsible for the chromatographic interactions with the analytes, were tested and compared in terms of mobility and selectivity. Only the resorcarene phosphates exhibited sufficient mobilities at low pH exceeding the mobility of the electroosmotic flow (EOF). Retention factors of the parabens were found to increase with increasing chain length of the alkyl residues attached to the resorcarene. However, maximum selectivity was observed for an intermediate chain length (C8). An equation for the calculation of retention factors in discontinuous electrokinetic chromatography (EKC) is presented.  相似文献   

12.
The complexation of various ammonium ions with a resorcarene host was evaluated by ab initio calculations. The approximations of the binding locations and the interaction energies for each guest are reported. The supramolecular complex formation also affects the conformation of the resorcarene host.  相似文献   

13.
The host-guest assembly of CB7 with a series of alkyl(trimethyl)ammonium (C(n)TA(+)) surfactants of different chain lengths (n=6-18) has been studied. The complexation behaviour was investigated by NMR spectroscopy, isothermal titration calorimetry and kinetics measurements. The combined results of these techniques provided evidence for the formation of 1:1 inclusion and 2:1 external complexes in the cases of C(n)TA(+) with n=12-18. The binding constants for the 1:1 complexes are independent of the alkyl chain length of the surfactant, whereas a relationship between K(2:1) and the chain length of the surfactant was found for the 2:1 complexes.  相似文献   

14.
The enthalpies of formation and equilibrium constants are reported for molecular complexes of I2 with five ethylbenzene and ninen-alkylbenzene donor molecules in CCl4. The wavelength of maximum absorbance for each complex is also reported. For ethylbenzene donor molecules, the formation enthalpy and equilibrium constant for the complexes depend strongly on the number of ethyl groups attached to the benzene ring, but only weakly on the position of the groups. For then-alkylbenzene donor molecules, both the formation enthalpy and equilibrium constant for complex formation are indenpendent of the length of the alkyl chain. These results are consistent with previous observations on weak complexes of I2 with substituted benzene donors.  相似文献   

15.
Resorcarenes have become a popular subject of study in the field of supramolecular chemistry. In this work the formation of host-guest complexes between a synthetic macrocyclic host, tetraethylresorcarene, and various eligible planar guests, was studied by mass spectrometric methods. The size and nature of the guest ion strongly influenced the complex formation. Collision-induced dissociation experiments revealed the fragmentation patterns of the resorcarene skeleton and the differences in fragmentation induced by the guest ions.  相似文献   

16.
We report here, for the first time, kinetic control of the face-direction of cyclodextrin (CD) in the construction of a pseudo-rotaxane with an alkyl chain bearing pyridyl end caps. The yields of complexes of CDs with guest alkyl derivatives were controlled by the simple change of the position and the number of methyl groups bound to the pyridyl moiety. Single-substituted pyridyl groups attached to the ends of the alkyl chain regulated the rate for CDs passing them. Two methyl substituents could clearly govern the degree of complex formation of CD with guest molecules and resulted in the distinction of face-direction of CD molecules entering the gates at guest ends.  相似文献   

17.
The nickel(II) and palladium(II) complexes of oxamide oximes substituted with alkyl chains of different length (C4-C8) were synthesized from the reaction of dichloroglyoxime with the corresponding amine derivatives. All compounds have been characterized by X-ray diffraction on single crystals and were found to be centrosymmetric at the metal center which is bound by the four oximic nitrogen atoms of two ligands in a square planar environment. Crystal structure analyses of Ni(II) and Pd(II) complexes showed that all of the Pd(II) complexes but only the hexyl-substituted oxamide oxime Ni(II) complex form infinite tubular channels. Their conformational analyses were carried out in order to understand the role of the chain length and of the metal center in the formation of the tubular channels and it was found that the formation of infinite tubular channels in crystals of Ni(II) and Pd(II) alkyl-substituted oxamide oxime complexes is related to the orientation of the alkyl chains relative to the central core.  相似文献   

18.
New bis (alkyl) selenosalen podand ligands having Se2N2 donor sites have been synthesized by the condensation of unsymmetrical o-formylphenyl alkyl selenide (1-3) with ethylenediamine. The reaction of bis(alkyl)selenosalen podands with Pd(II) and Pt(II) afforded selenoether-selenolate coordination complexes 7-10via cleavage of one of the two Se-C(alkyl) bonds of bis(alkyl)selenosalen podands upon complexation. DFT calculations revealed that the cleavage of Se-C(alkyl) bonds occurred possibly via S(N)2 mechanism instead of a sequence of oxidative addition and reductive elimination reactions. The spectral data and elemental analyses confirmed the formation of selenoether-selenolate complexes. The structures of the podands N,N'-bis[(2-methylseleno)phenylmethylene]-1,2-ethanediamine (4), N,N'-bis[(2-decylseleno)phenylmethylene]-1,2-ethanediamine (5) and the selenoether-selenolate complex 8 have been determined by single crystal X-ray diffraction analysis. The crystal structure of 5 showed SeH interaction with a ladder like 3D supramolecular arrangement via interdigitation of long alkyl chains. Comparison of crystal packing of podands 4 and 5 indicates that the alkyl chain length has significant impact on the crystal packing. The platinum selenolate complex 8 shows a square planar arrangement around the Pt centre, where the Se atoms in the selenolate and the selenoether have nearly equal Pt-Se bond length.  相似文献   

19.
Bis(dipyrromethene) ligands linked by an alkyl spacer between beta and beta' positions are shown to give helical dimers or monomers, dependent upon the length of the alkyl linker, upon complexation. Ligands consisting of methylene, ethylene, and propylene linkers -(CH(2))(n)()- (n = 1, 2, and 3) give helical dimers, while longer linking chains (n = 4, 5, or 6) give monomers or mixtures of dimers and monomers. X-ray crystal structures of the dimeric zinc complexes (n = 1, 2, and 3) reveal that the angles between dipyrromethene planes and the extent of helicity in the complexes differ as the length of the linker varies. The extent of helicity was assessed and found to be dependent upon the length and, specifically, the conformational preferences of the alkyl spacer unit. The presence of an ethylene linker gave complexes of greatest helicity. The use of a methylene spacer gave less helical structures upon complexation, while propylene spacers gave only slightly helical complexes. Our studies identify the crucial importance that the conformational preferences of the beta-beta' alkyl spacer group plays in the coordination algorithm of self-assembly to form dipyrromethene based complexes.  相似文献   

20.
基于聚对苯二甲酰对苯二胺(PPTA), 采用N-烷基化方法制备了系列PPTACns(烷基侧链碳原子数n=8, 10, 12, 14, 16, 18)刚性主链梳状高分子, 利用DSC, XRD和FTIR等方法研究了其主链堆积行为、 分子链构象及热性能等与烷基侧链长度及结晶特性之间的关系. XRD和DSC结果表明, 当烷基侧链碳原子数达到14时, 烷基侧链发生结晶. XRD结果显示, PPTACns具有层状结构, 烷基侧链长度对主链层间距影响显著. FTIR研究发现, 烷基侧链的聚集状态对PPTACns分子链的构象产生较大影响, 伴随着烷基侧链结晶的熔融, PPTACns的分子链构象发生显著改变. 烷基侧链处于熔融状态的PPTACns的νC=O和γC-H谱带峰位与烷基侧链不结晶的PPTACn接近.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号