首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C(2)-Symmetric two bis(amino alcohol)oxalamides (diamidediols) were synthesized and fully characterized. A new method was developed and successfully applied for the simultaneous preconcentration of both trace and toxic metals in water, by using C(2)-symmetric compounds. Under the optimum experimental conditions (i.e. pH = 10.0 +/- 0.2, 2.75 x 10(-3) mol L(-1) N,N'-bis[(1R)-1-ethyl-2-hydroxyethyl]ethanediamide (DAD1), 1.75 x 10(-3) mol L(-1) N,N'-bis[(1S)-1-benzyl-2-hydroxyethyl]-ethanediamide (DAD2), 0.10% w/v octylphenoxy-polyethoxyethanol (Triton X-114)), calibration graphs were linear in the range of 2.5 - 25.0 ng mL(-1) for Cu and Cd, 5.0 - 25.0 ng mL(-1) for Co and Ni. The enrichment factors were 18, 23, 18 and 20 for Cd, Cu, Co and Ni in the case of DAD1, respectively; 20, 22, 17 and 20 for Cd, Cu, Co and Ni in the case of DAD2. The limits of detection for DAD1 were found to be 0.45, 0.50, 1.25 and 0.60 ng mL(-1) for Cd, Cu, Co and Ni, respectively, and for DAD2 were found to be 0.44, 0.25, 0.60 and 1.55 ng mL(-1) for Cd, Cu, Co and Ni, respectively. The developed method was applied to the determination of Cu, Cd, Co and Ni in water samples and certified reference materials with satisfactory results.  相似文献   

2.
In the present study a simple versatile separation method using cloud point procedure for extraction of trace levels of zirconium and hafnium is proposed. The extraction of analytes from aqueous samples was performed in the presence of quinalizarine as chelating agent and Triton X-114 as a non-ionic surfactant. After phase separation, the surfactant-rich phase was diluted with 30% (v/v) propanol solution containing 1 mol l(-1) HNO3. Then, the enriched analytes in the surfactant-rich phase were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The different variables affecting the complexation and extraction conditions were optimized. Under the optimum conditions (i.e. 3.4 x 10(-5) mol l(-1) quinalizarine, 0.1% (w/v) Triton X-114, 55 degrees C equilibrium temperature) the calibration graphs were linear in the range of 0.5-1000 mug l(-1) with detection limits (DLs) of 0.26 and 0.31 microg l(-1) for Zr and Hf, respectively. Under the presence of foreign ions no significant interference was observed. The precision (%RSD) for 8 replicate determinations at 200 microg l(-1) of Zr and Hf was better than 2.9% and the enrichment factors were obtained as 38.9 and 35.8 for Zr and Hf, respectively. Finally, the proposed method was successfully utilized for the determination of these cations in water and alloy samples.  相似文献   

3.
A very simple and selective spectrophotometric method for simultaneous determination of Co(II) and Ni(II) by 1-(2-pyridylazo) 2-naphthol (PAN), in micellar media, using H-point standard addition method (HPSAM) is described. The ligand and its metal complexes (Co(II)-PAN and Ni(II)-PAN) were made water-soluble by the neutral surfactant Triton X-100, and therefore, no extraction with organic solvents was required. Formation of both the complexes was complete within 10 min at pH 9 (adjusted by ammonia buffer). The linear range was 0.10-2.00 microg ml(-1) for Co(II) and 0.05-1.50 microg ml(-1) for Ni(II). The relative standard deviation (R.S.D.) for the simultaneous determination of 0.50 microg ml(-1) each of Co(II) and Ni(II) was 2.32 and 3.13%, respectively. Interference effects of common anions and cations were studied and the method was applied to simultaneous determination of Co(II) and Ni(II) in alloy samples. The method was compared with derivative spectrophotometric method.  相似文献   

4.
Kara D  Fisher A  Hill SJ 《The Analyst》2005,130(11):1518-1523
An on-line flow injection method for the direct determination of trace elements in environmental samples is described. A mini-column packed with 2,6-diacetylpyridine functionalized Amberlite XAD-4 was used to preconcentrate and separate 8 trace metals (Cd, Co, Cu, Mn, Ni, Pb, U and Zn) from water and extracts from solid samples. The metals were eluted with 0.1 M HNO(3) directly to the detection system (either inductively coupled plasma-mass spectrometry (ICP-MS) or flame atomic absorption spectrometry (FAAS)). As well as demonstrating that the resin could be used to preconcentrate ultra-trace analytes from natural waters, it was also shown to work well at a pH of 5.5. Therefore, after treatment of sample digests with sodium fluoride, samples that contain extremely large concentrations of iron may be analysed for trace analytes without the excess iron overloading the capacity of the resin. To this end, the analytes Cd, Co, Cu and Ni were preconcentrated from acid extracts of certified soil/sediment samples and then eluted with nitric acid to be determined on-line. Limits of detection (3sigma) of Cd = 0.33 microg l(-1), Co = 0.094 microg l(-1), Cu = 0.34 microg l(-1), Mn = 0.32 microg l(-1), Ni = 0.30 microg l(-1), Pb = 0.43 microg l(-1), U = 0.067 microg l(-1) and Zn = 0.20 microg l(-1) for the FI-ICP-MS system and Cd = 22 microg l(-1), Co = 60 microg l(-1), Cu = 10 microg l(-1) and Ni = 4.8 microg l(-1) for the FI-FAAS system were obtained. Analysis of certified reference materials showed good agreement with the certified values using the two methods.  相似文献   

5.
A simple method is described for preconcentration and separation of trace metals such as Ag, Co, Cr, Cu, Fe, Mn, Ni and Pb simultaneously from seawater using a cloud point extraction (CPE) procedure. Triton X-114 nonionic surfactant and ammonium pyrrolidine dithiocarbamate (APDC) have been used as an extraction medium and a chelating extractant, respectively. The amounts of Triton X-114 and APDC and the pH value necessary for extraction were carefully optimized. The preconcentration factor of about 200 is achieved for all the studied metals. Electrothermal atomic absorption spectrometry (ETAAS) with an Ir coated graphite tube as permanent chemical modifier has been used for determination. The limits of detection of Ag, Co, Cr, Cu, Fe, Mn, Ni and Pb were 0.003, 0.008, 0.003, 0.006, 0.015, 0.002, 0.009 and 0.01 ng ml-1, respectively. Certified reference materials such as CASS-4 and NASS-5 (seawater) and NIST-1640 (natural water) have been used for validation of the new method. The relative standard deviation (%) obtained for all the metals are in the range 0.8 - 3.6% for natural water and 11-25% for seawater materials, except for Co in NASS-5 for which it was 50%.  相似文献   

6.
Teo KC  Chen J 《The Analyst》2001,126(4):534-537
Cloud point extraction has been used for the preconcentration of manganese, after the formation of a complex with 1-(2-thiazolylazo)-2-naphthol (TAN), and later analysis by flame atomic absorption spectrometry using octylphenoxypolyethoxyethanol (Triton X-114) as surfactant. The chemical variables affecting the separation phase and the viscosity affecting the detection process were optimized. Under the optimum conditions (i.e., pH = 9.2, [TAN] = 2.0 x 10(-5) mol l-1, [Triton X-114] = 0.05%, added methanol volume = 0.2 ml), preconcentration of 50 ml of sample solution permitted the detection of 0.28 ppb for manganese. The enhancement factor was 57.6. The proposed method has been applied to the determination of manganese in water samples.  相似文献   

7.
Two polycrystalline graphites (pencil lead and glassy carbon) were used as sorbents for solid-phase microextraction of a nonionic alkylphenol ethoxylate surfactant (Triton X-100). Analyses were performed by reversed-phase HPLC-fluorescence detection. The presence of the benzene ring in the congeners of Triton X-100 also allowed their direct detection at lambda(ex) = 230 nm and lambda(em) = 310 nm. Variables such as time of adsorption, time of desorption and concentration of surfactant in water were evaluated. The method limit of detection was found to be 0.5 microg/l for Triton X-100, with a linear dynamic range of 0.5-150 microg/l. Results were compared to those obtained using polymeric fibers such as PDMS/DVB and Carbowax/TPR. The chemical resistance and low cost of the polycrystalline graphites are advantageous over commercially available SPME fibers.  相似文献   

8.
A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.  相似文献   

9.
The cloud-point methodology was successfully employed for the preconcentration of heavy metal cations at trace levels from aqueous samples prior to flame atomic absorption spectrometry (FAAS). Cations were taken into a complex with 8-quinolinol in an aqueous non-ionic surfactant, Triton X-114, medium and concentrated in the surfactant rich phase by bringing the solution to the cloud-point temperature. The preconcentration of only 100 mL of the solution with 1% Triton X-114 and 10(-3) M 8-quinolinol at pH 7.0 gave a preconcentration factor higher than 100 for most cations. Under these conditions, the detection limits of the cloud-point extraction-FAAS system were 0.8 - 15 microg/L.  相似文献   

10.
Yuan YX  Wang YJ 《Talanta》1989,36(7):777-779
The micellar solubilization complex systems of V(V), Cu(II), Zr(IV), Pd(II), Fe(III), Ni(II) and Co(II) with 3,5-diBr-PADAP and Triton X-100 have been investigated by HPLC on an ODS (5 x 250 mm) column with a ternary eluent of methanol-acetone-acetone-water containing TBA(+) and acetate buffer (pH 3.0) at 600 or 572 nm wavelength for the detection of the complexes. An HPLC-spectrophotometric method for determination of seven metal ions has been developed. The peak height calibration curves are linear up to 50-100 mu/1, metal ion concentration. The relative standard deviations for the determination of 30.0 mu/1 metal ion were 0.9-1.6% and the detection limits (S/N = 3) were 1.1-3.6 mug/1.  相似文献   

11.
For human urine beryllium (Be), each sample (500 microl) was diluted (1+1) with Nash reagent (containing 0.2% (v/v) acetylacetone and 2.0 M ammonium acetate buffer at pH 6.0) and then a 20-microl volume of Triton X-100 (0.4%, v/v) aqueous solution was added. An aliquot (10 microl) of the diluted urine mixture was introduced into a graphite cuvette and was atomized according to a temperature program. The method detection limit (MDL, 3sigma) for Be was 0.37 microg/l in the undiluted urine sample and the calibration graph was linear up to 65.0 microg/l. Calibration graphs were prepared by the standard addition method. Accuracies of 98.6-102% were obtained when testing standard reference material (SRM 2670) freeze dried human urine samples. Precision (relative standard deviation, RSD) for urine Be was < or = 2.3% (withinrun, n = 5) and was < or = 3.0% (between-run, n = 3). For human urine and serum selenium (Se), samples (100 microl) were diluted with HNO3 (0.2%, v/v) to make a (1+1) dilution for urine analysis or a (1+4) dilution for serum analysis. An additional aliquot (10 microl) of Triton X-100 (0.1%, v/v) was added to each 200 microl of (1+1) diluted urine (or 20 microl of the Triton X-100 was added to each 500 microl of (1+4) diluted serum) sample. After the diluted sample mixture (10 microl) was introduced into a graphite cuvette, the corresponding chemical modifier (10 microl, containing Ni2+ + Pd + NH4NO3 in HNO3 (0.2%, v/v)) was added to it and the mixture was atomized. The MDL (3sigma) for Se in urine and in serum was 4.4 and 21.4 microg/l in undiluted sample, respectively, and the calibration graphs were linear up to 150 and 400 microg/l. Accuracies of urine Se were 98.9 - 99.4% by testing SRM 2670 (NIST) urine standards with RSD (between-run, n = 3) within 2.9%; and that of serum Se was 97.2% when testing a certified second-generation human serum (No. 29, #664) with RSD (between-run, n = 3) of 1.4%. The proposed method can be applied easily, directly, and accurately to the measurement of Be and Se in real samples (including six urine Se and four serum Se from patients of Blackfoot Disease in Taiwan).  相似文献   

12.
Cloud point extraction has been used for the preconcentration of m-nitroaniline, o-nitroaniline and p-nitroaniline and later simultaneous spectrophotometric determination using polyethylene glycol tert-octylphenyl ether (Triton X-100) as surfactant. The resolution of a ternary mixture of the nitroaniline isomers (after extraction by cloud point) by the application of least-squares support vector machines (LS-SVM) was performed. The chemical parameters affecting the separation phase and detection process were studied and optimized. Under the optimum experimental conditions (i.e. pH 7.0, Triton X-100=0.6%, equilibrium time 20 min and cloud point 75 degrees C), calibration graphs were linear in the range of 0.2-20.0, 0.1-15.0 and 0.1-17.0 microg ml(-1) with detection limits of 0.08, 0.05 and 0.06 microg ml(-1) for m-nitroaniline, o-nitroaniline and p-nitroaniline, respectively. The experimental calibration matrix was designed with 21 mixtures of these chemicals. The concentrations were varied between calibration graphs concentrations of nitroaniline isomers. The root mean square error of prediction (RMSEP) for m-nitroaniline, o-nitroaniline and p-nitroaniline were 0.0146, 0.0308 and 0.0304, respectively. This procedure allows the simultaneous determination of nitroaniline isomers in synthetic and real matrix samples good reliability of the determination was proved.  相似文献   

13.
The application of the cloud point extraction (CPE) technique for capillary electrophoresis (CE) determination of metal ions was demonstrated using Cu(II) and Co(II) as model metal ions. The preconcentration of Cu(II) and Co(II) in aqueous solution was achieved by CPE with 1-(2-pyridylazo)-2-naphthol (PAN) as the chelating agent and Triton X-114 as the extractant. Baseline separation of the PAN chelates of Cu(II) and Co(II) was realized by CE with a photodiaode array detector in a  μm i.d. fused-silica capillary at 17 kV. A 50 mM NH4Ac buffer solution (pH 8.0) containing 0.2 mM of PAN in 80% (v/v) of acetonitrile and 20% (v/v) doubly deionized water (DDW) was used as the separation medium to avoid the adsorption of hydrophobic substances and nonionic surfactant Triton X-114 onto the inner surface of the separation capillary, ensuring the separation efficiency and reproducibility. The precision (relative standard deviation (R.S.D.), n=5) for five replicate injections of a mixture of 20 μg/l of Co(II) and Cu(II) were 0.74 and 1.8% for the migration time, 3.1 and 0.64% for the peak area measurement, respectively. The apparent concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for CE separation and in the initial solution, was 15.9 for Co(II) and 16.3 for Cu(II). The linear concentration range was from 3 to 100 μg/l for both Co(II) and Cu(II). The detection limits of Co(II) and Cu(II) were 0.12 and 0.26 μg/l, respectively. The developed method was successfully applied to the determination of Co(II) and Cu(II) in tap water, snow water, and flavor wines.  相似文献   

14.
A new approach for developing a cloud-point extraction-flame atomic absorption spectrometric method has been described and used for the determination of cobalt. In this approach, water was removed from the final diluted surfactant rich phase obtained in cloud-point extraction procedure. The results indicated that removing water from this phase increased the enhancement factor by 4-fold. 1-(2-Pyridylazo)-2-naphthol (PAN) and octylphenoxypolyethoxyethanol (Triton X-114) were used as a hydrophobic ligand and a nonionic surfactant, respectively. The chemical variables affecting the preconcentration step were optimized. The effect of the water concentration in the final diluted methanolic surfactant solution on the analytical signal was investigated. The results showed that the analytical signal decreased by 30% and 52% in 15% and 25% water concentrations in methanol, respectively. An enhancement factor of 115 was obtained for cobalt extracted from only 10 ml of a sample. The detection limit obtained under the optimal condition was 0.38 microg l(-1). The proposed procedure was applied to the determination of cobalt in urine samples.  相似文献   

15.
A simple and very sensitive method for the spectrophotometric determination of manganese in pharmacological preparations and vegetable fertilizers is proposed. The method is based on the formation of a blue coloured complex of Mn (II) with 9-phenyl-2,3,7-trihydroxy-6-fluorone (PF) in the presence of cetylpyridinium chloride (CP) and Triton X-100. Optimum concentrations of PF, CP, Triton X-100 and pH ensuring maximum absorbance were defined. The complex Mn(II)-PF-CP-Triton X-100 shows maximum absorbance at 591 nm with the molar absorptivity value 1.77x10(5 )L mol(-1 )cm(-1). The detection limit of the method is 0.004 microg mL(-1). The Beer's law is obeyed for manganese concentrations in the range 0.02-0.2 microg mL(-1). The effect of foreign ions was elucidated. The statistical evaluation of the method was carried out for six determination using 5 microg Mn and the following results were obtained: standard deviation 0.021, confidence interval 5.05+/-0.05 microg Mn. The method has been applied for the determination of manganese in pharmacological preparations (Biovital, Kinder Biovital) and vegetable fertilizers (Hydrovit 100, Florovit).  相似文献   

16.
A preconcentration and determination method for humic and fulvic acids at trace levels in natural water samples was developed. Cloud point extraction was successfully employed for the preconcentration of humic acid (HA) and fulvic acid (FA) prior to the determination by using a flow injection (FI) system coupled to a spectrophotometric UV-Vis detector. The quantitative extraction of HA and FA within the pH range 1-12 was obtained by neutralization of the anionic charge on the humic substances with a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB). This generated a hydrophobic species that was subsequently incorporated (solubilized) into the micelles of a non-ionic surfactant polyethylene glycol, tert-octylphenyl ether (Triton X-114). The FI method for HA and FA determination was developed by injection of 100 microl of the extracted surfactant-rich phase using an HPLC pump with spectrophotometric detection at 350 nm. A 50 ml sample solution preconcentration allowed an enrichment factor of 167. The limit of detection (LOD) obtained under the optimal conditions was 5 microg l(-1). The precision for ten replicate determinations at 0.2 mg l(-1) HA was 3.1% relative standard deviation (RSD), calculated from the peak heights. The calibration using the preconcentration system for HA and FA was linear with a correlation coefficient (r2) of 0.9997 at levels near the detection limits up to at least 1 mg l(-1). The method was successfully applied to the determination of HA and FA in natural water samples (river water).  相似文献   

17.
A study was carried out on the direct determination of Cr and Mn in urine using simultaneous atomic absorption spectrometry (SIMAAS). The heating program conditions, the absorbance signal profiles, the influence of different chemical modifiers, and the urine sample volume delivery into the tube were optimized to perform the calibration with aqueous solutions. Among several chemical modifiers tested, the best recovery and repeatability results were obtained for 3 microg Mg(NO3)2. On using this modifier, the pyrolysis and atomization temperatures for simultaneous determination of Cr and Mn were 1,300 degrees C and 2,500 degrees C, respectively. Urine samples were diluted (1+1) with 2.0% (v/v) HNO3 + 0.05% (w/v) Triton X-100 prepared in high purity water. A 20-microL aliquot of analytical solution and 10 microL of chemical modifier solution were delivered to the graphite tube. The characteristic masses were 7.8 pg for Cr (RSD=4.0%) and 4.6 pg for Mn (RSD=2.6%). The limits of detection were 0.08 microg L(-1) (n=20, 3s) for Cr and 0.16 microg L(-1) (n=20, 3s) for Mn. Recovery studies for 1.0 or 2.5 microg L(-1) of Cr and Mn added to different urine samples showed acceptable results for Cr (100%, RSD=14%) and Mn (88%, RSD=5.6%).  相似文献   

18.
In the present paper, conventional spectrophotometry in conjunction with cloud point extraction-preconcentration were investigated as alternative methods for paracetamol (PCT) assay in urine samples. Cloud point extraction (CPE) was employed for the preconcentration of p-aminophenol (PAP) prior to spectrophotometric determination using the non-ionic surfactant Triton X-114 (TX-114) as an extractant. The developed methods were based on acidic hydrolysis of PCT to PAP, which reacted at room temperature with 25,26,27,28-tetrahydroxycalix[4]arene (CAL4) in the presence of an oxidant (KIO(4)) to form an blue colored product. The PAP-CAL4 blue dye formed was subsequently entrapped in the surfactant micelles of Triton X-114. Cloud point phase separation with the aid of Triton X-114 induced by addition of Na(2)SO(4) solution was performed at room temperature as an advantage over other CPE assays requiring elevated temperatures. The 580 nm-absorbance maximum of the formed product was shifted bathochromically to 590 nm with CPE. The working range of 1.5-12 mug ml(-1) achieved by conventional spectrophotometry was reduced down to 0.14-1.5 mug ml(-1) with cloud point extraction, which was lower than those of most literature flow-through assays that also suffer from nonspecific absorption in the UV region. By preconcentrating 10 ml sample solution, a detection limit as low as 40.0 ng ml(-1) was obtained after a single-step extraction, achieving a preconcentration factor of 10. The stoichiometric composition of the dye was found to be 1 : 4 (PAP : CAL4). The impact of a number of parameters such as concentrations of CAL4, KIO(4), Triton X-100 (TX-100), and TX-114, extraction temperature, time periods for incubation and centrifugation, and sample volume were investigated in detail. The determination of PAP in the presence of paracetamol in micellar systems under these conditions is limited. The established procedures were successfully adopted for the determination of PCT in urine samples. Since the drug is rapidly absorbed and excreted largely in urine and its high doses have been associated with lethal hepatic necrosis and renal failure, development of a rapid, sensitive and selective assay of PCT is of vital importance for fast urinary screening and antidote administration before applying more sophisticated, but costly and laborious hyphenated instrumental techniques of HPLC-SPE-NMR-MS.  相似文献   

19.
In this paper is proposed a simultaneous pre-concentration procedure using cloud point extraction for the determination of copper and zinc in food samples employing sequential multi-element flame atomic absorption spectrometry (FS-FAAS). The reagent used is 1-(2-pyridylazo)-2-naphthol (PAN) and the micellar phase is obtained using the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) and centrifugation. The optimization step was performed using Box-Behnken design for three factors: solution pH, reagent concentration and buffer concentration. A multiple response function was established in order to get an experimental condition for simultaneous extraction of copper and zinc. Under the optimized experimental conditions, the method allows the determination of copper with a limit of detection (3sigma(b)/S, LOD) of 0.1 microg L(-1), precision expressed as relative standard deviation (R.S.D.) of 2.1 and 1.3% (N=10), for copper concentrations of 10 and 50 microg L(-1), respectively. Zinc is determined with a LOD of 0.15 microg L(-1) and precision as R.S.D. of 2.7 and 1.7% for concentrations of 10 and 50 microg L(-1), respectively. The enhancement factors obtained were 36 and 32 for copper and zinc, respectively. The accuracy was assessed by analysis of certified reference materials, namely, SRM 1567a - Wheat Flour and SRM 8433 - Corn Bran from National Institute of Standards & Technology and BCR 189-wholemeal flour from Institute of Reference Materials and Measurements. The method was applied to the determination of copper and zinc in oats, powdered chocolate, corn flour and wheat flour samples. The copper content in the samples analyzed varied from 1.14 to 3.28 microg g(-1) and zinc from 8.7 to 22.9 microg g(-1).  相似文献   

20.
The cloud point extraction behavior of Sn(II) and Sn(IV) using alpha-polyoxometalate and mixed surfactants solution was investigated. The mixture of a nonionic surfactant (Triton X-100) and a cationic surfactant (CTAB) was utilized as a suitable micellar medium for preconcentration and extraction of tin complexes. Sn(II) in the presence of Sn(IV) was extracted with alpha-polyoxometalate, 0.3% (w/v) Triton X-100 and 3.5x10(-5) mol L(-1) CTAB at pH 1.2. Whereas the pH value of 3.7 were used for the individual determination of Sn(II) and Sn(IV) and also for total tin determination at the same conditions. Enrichment factors of 100 were obtained for the preconcentration of both metal ions. Under the optimal conditions, linearity was obeyed in the ranges of 55-670 microg L(-1) of Sn(II) and 46-750 microg L(-1) of Sn(IV) ion concentration. The detection limit of the method was also found to be 12.6 microg L(-1) for Sn(IV) and 8.4 microg L(-1) for Sn(II). The relative standard deviation of seven replicate determination of 100 microg L(-1) both metal ions were obtained about 2.4%. The diverse ion effect of some anions and cations on the extraction efficiency of target ions were tested. Finally, the optimized conditions developed were successfully utilized for the determination of each metal ion in various alloy, juice fruit, tape and waste water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号