首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
This paper presents insight into the heat flux-temperature (q ? T) integral relationship based on constant thermophysical properties. This relationship is often used in one-dimensional, transient heat transfer studies involving null-point calorimetry and heat flux investigations. This study focuses on a short transient studies where energy has not fully penetrated the body as the result of an imposed surface heating condition. A full nonlinear heat transfer model is developed involving a half-space planar region. Temperature results are then introduced into the constant property integral relationship and a newly derived Kirchoff integral relationship for retrieving the local heat flux. Good agreement is observed between the fully nonlinear results and locally linearized system. Additionally, a sensitivity study is presented which involves perturbing the average thermophysical properties of thermal conductivity and heat capacity.  相似文献   

2.
The dual-phase-lag heat transfer model is applied to investigate the transient heat conduction in an infinitely long solid cylinder for an exponentially decaying pulse boundary heat flux and for a short-pulse boundary heat flux. A hybrid application of the Laplace transform method and the control volume scheme is used to obtain the numerical solutions. Comparison between the numerical results and the analytic solution for an exponentially decaying heat flux pulse evidences the accuracy of the present numerical results. Results further show that the present numerical scheme can overcome the mathematical difficulties to analyze such problems. Effects of the thermal lag ratio τq/τT, the shift time τqτT, the function form of heating pulse, and geometry of medium on the behavior of heat transfer are investigated.  相似文献   

3.
In order to explore the capability of a solid–liquid phase change material (PCM) for cooling electronic or heat storage applications, melting of a PCM in a vertical rectangular enclosure was studied. Three protruding generating heat sources are attached on one of the vertical walls of the enclosure, and generating heat at a constant and uniform volumetric rate. The horizontal walls are adiabatic. The power generated in heat sources is dissipated in PCM (n-eicosane with the melting temperature, Tm = 36 °C) that filled the rectangular enclosure. The advantage of using PCM is that it is able to absorb high amount of heat generated by heat sources due to its relatively high energy density. To investigate the thermal behaviour and thermal performance of the proposed system, a mathematical model based on the mass, momentum and energy conservation equations was developed. The governing equations are next discretised using a control volume approach in a staggered mesh and a pressure correction equation method is employed for the pressure–velocity coupling. The PCM energy equation is solved using the enthalpy method. The solid regions (wall and heat sources) are treated as fluid regions with infinite viscosity and the thermal coupling between solid and fluid regions is taken into account using the harmonic mean of the thermal conductivity method. The dimensionless independent parameters that govern the thermal behaviour of the system were next identified. After validating the proposed mathematical model against experimental data, a numerical investigation was next conducted in order to examine the thermal behaviour of the system by analyzing the flow structure and the heat transfer during the melting process, for a given values of governing parameters.  相似文献   

4.
A common of finite-time heat transfer processes between high- and low-temperature sides with generalized radiative heat transfer law [q ∝ Δ(Tn)] is studied in this paper. In general, the minimization of entropy generation in heat transfer processes is taken as the optimization objective. A new physical quantity, entransy, has been identified as a basis for optimizing heat transfer processes in terms of the analogy between heat and electrical conduction recently. Heat transfer analyses show that the entransy of an object describes its heat transfer ability, as the electrical energy in a capacitor describes its charge transfer ability. Entransy dissipation occurs during heat transfer processes, as a measure of the heat transfer irreversibility with the dissipation related thermal resistance. Under the condition of fixed heat load, the optimal configurations of hot and cold fluid temperatures for minimizing entransy dissipation are derived by using optimal control theory. The condition corresponding to the minimum entransy dissipation strategy with Newtonian heat transfer law (n = 1) is that corresponding to a constant heat flux rate, while the condition corresponding to the minimum entransy dissipation strategy with the linear phenomenological heat transfer law (n = −1) is that corresponding to a constant ratio of hot to cold fluid temperatures. Numerical examples for special cases with Newtonian, linear phenomenological and radiative heat transfer law (n = 4) are provided, and the obtained results are also compared with the conventional strategies of constant heat flux rate and constant hot fluid (reservoir) temperature operations and optimal strategies for minimizing entropy generation. Moreover, the effects of heat load changes on the optimal hot and fluid temperature configurations are also analyzed.  相似文献   

5.
In this paper, heat and mass transfer analysis for boundary layer stagnation-point flow over a stretching sheet in a porous medium saturated by a nanofluid with internal heat generation/absorption and suction/blowing is investigated. The governing partial differential equation and auxiliary conditions are converted to ordinary differential equations with the corresponding auxiliary conditions via Lie group analysis. The boundary layer temperature, concentration and nanoparticle volume fraction profiles are then determined numerically. The influences of various relevant parameters, namely, thermophoresis parameter Nt, Brownian motion parameter Nb, Lewis number Le, suction/injection parameter S, permeability parameter k1, source/sink parameter λ and Prandtl parameter Pr on temperature and concentration as well as wall heat flux and wall mass flux are discussed. Comparison with published results is presented.  相似文献   

6.
The effects of suction/injection on the laminar mixed convection boundary-layer flow on a vertical wall with a prescribed heat flux are considered. The conditions which allow the equations to be reduced to similarity form are derived and numerical solutions of the resulting equations are obtained for a range of values of the suction/injection and buoyancy parameters. Two specific cases, corresponding to a stagnation point flow and uniform wall heat flux, are treated in detail. Results are presented in terms of the skin friction and wall temperature with a selection of velocity and temperature profiles also being given. Dual solutions are found to exist for assisting flow, these are an addition to what has been reported previously for opposing flows. Solutions for some limiting values of the parameters are also derived.   相似文献   

7.
The central symmetric time-fractional heat conduction equation with Caputo derivative of order 0 < α ≤ 2 is considered in a ball under two types of Robin boundary condition: the mathematical one with the prescribed linear combination of values of temperature and values of its normal derivative at the boundary, and the physical condition with the prescribed linear combination of values of temperature and values of the heat flux at the boundary, which is a consequence of Newton’s law of convective heat exchange between a body and the environment. The integral transform technique is used. Numerical results are illustrated graphically.  相似文献   

8.
In order to verify the reasonableness of off-gas pressure and wall temperature, a mathematical model for gas flow and heat transfer in ladle furnace (LF) lid is developed based on 3-D Navier–Stokes equations and kε two equation turbulent models as well as energy conservation equation. The gas velocity vector distribution of skirt clearance between the top edge of ladle and furnace lid and electrode gaps between three graphite electrodes and furnace lid, the gas flow line distribution, pressure and temperature distribution on the furnace lid wall are simulated. Simulation results show that appropriate off-gas pressures are 200 Pa, 200 Pa and 150 Pa when electric arc emerges from molten steel surface and alloy hole is unsealed, electric arc emerges from molten steel surface and alloy hole is closure, electric arc immerges into molten steel surface and alloy hole is closure, respectively. The maximum temperature presents in the middle of LF lid in all of heating conditions, and the temperature value are 563, 603 and 343 K. Finally, the relations between gas volume and off-gas pressure are analyzed in different width of skirt clearance, and some relevant mathematical expressions are obtained. By comparing both simulation results and practical data, the advice on reducing off-gas pressure is proposed, and the maximum temperatures of furnace lid wall have good agreement with actual data.  相似文献   

9.
10.
Wall bounded flow with severe adverse pressure, separation, reattachment and stagnation has non-equilibrium (NE) exhibition. A wall function in turbulent flow is a remedy to avoid resolving near wall complex phenomena using predetermined functions as boundary conditions. The advantage of this case is permission to use a relatively coarse near wall cells and hence saving CPU time. Standard wall function (SWF) is a semi-empirical function that is just valid for constant shear near wall cell and local equilibrium flow. Popovac and Hanjalic introduced a non-equilibrium wall function as (PWF) with a blending method in v2f model. To investigate PWF in circulating flow, standard kε model that has key role in complex and expensive industrial problems is used in this study. The approach derived by Popovac and Hanjalic retains the functional form of the SWF and can be easily implemented in existing code. Simulation results are validated against direct numerical simulation (DNS) on channel and experimental data on backward facing step (BS) and a sharp U bend flow. Prediction with PWF shows that use of this wall function in kε model has not any sensitive change in near equilibrium flow. However, produces an improvement in NE conditions like flow in circulation zones.  相似文献   

11.
This paper presents a methodology combining experimental measurements with computational modeling to find the heat flux extracted during spray cooling of a metal surface. Controlled experiments are performed to impinge air-mist spray onto a metal probe surface while applying induction heating to follow a desired temperature history. A transient axisymmetric computational model of induction heating which couples electromagnetics and heat conduction has been developed and validated with a test problem. The model is calibrated to match transient dry measurements and then used to simulate a steady-state air-mist spray cooling experiment in order to quantify the heat extracted from the probe surface by the boiling water droplets. A detailed example is presented to illustrate this approach.  相似文献   

12.
《Applied Mathematical Modelling》2014,38(21-22):5126-5148
This article applies the golden section search method (GSSM), simplex search method (SSM) and differential evolution (DE) for predicting the unknown Fourier number (Fo), Vernotte number (Ve) and non-dimensional solar heat flux (S1) in a flat-plate solar collector when subjected to a given temperature requirement. The required temperature field is calculated using an analytical forward method by considering Fourier and non-Fourier heat conduction, and using this, the inverse problem is solved to predict the Fo, Ve and S1 which are assumed to be the unknown parameters. The study reveals that the temperature field is highly sensitive to the Fo, thus even a small error in the temperature measurement can result in an unrealistic estimation of heating time of the collector. The present study is proposed to be useful in determining the time, the time lag and solar heat flux for controlled heating of an absorber plate within a stipulated time, which will be required to attain a prescribed/desired temperature distribution. Additionally, the study also shows that subjected to different time levels, the same temperature distribution is possible through different absorber plate materials. It has been observed from the present study that apart from SSM and DE, GSSM fails to estimate the unknown parameters at large value of Ve and small value of Fo, due to the associated fluctuation in the measured temperature field. The present study further discusses the computational performance of direct search method (e.g. GSSM and SSM) with that of the evolutionary method (DE) in terms of the maximum number of iteration and CPU time required to achieve the desired objective.  相似文献   

13.
The group theoretic method is applied for solving problem of a unsteady free-convective laminar boundary-layer flow on a non-isothermal vertical plate under the effect of an external velocity and a magnetic field normal to the plate. The application of two-parameter transformation group reduces the number of independent variables, by two, and consequently the system of governing partial differential equations with the boundary and initial conditions reduces to a system of ordinary differential equations with appropriate corresponding conditions. The Runge–Kutta shooting method used to find the numerical solution of the velocity field, shear stress, heat transfer and heat flux has been obtained. The effect of the magnetic field on the velocity field and the Prandtl number on the heat transfer and heat flux has been discussed.  相似文献   

14.
This paper describes in detail a novel formulation of the method of characteristics for its application to solve one-dimensional compressible unsteady non-homentropic flow advected along porous wall channels. In particular, the method is implemented into a wall-flow monolith Diesel particulate filter model whose purpose is the pressure drop prediction. The flow inside the monolith channels is considered to be one-dimensional and the flow through the porous wall treated as a source term agree with the Darcy’s law. The flow dynamic behaviour at internal nodes of the channels is solved by means of shock capturing methods, whereas the end nodes, or boundary conditions, are solved applying the method of characteristics. The derived solution in this study of the Riemann variables and the entropy level includes the variation along the space–time plane due to cross-section area changes, friction and heat transfer as traditionally stated, but also takes into account the key influence on every line of the flow leaving or entering to the channels through the porous walls.  相似文献   

15.
A comprehensive numerical investigation on the natural convection in a rectangular enclosure is presented. The flow is induced due to the constant partial heating at lower half of the left vertical wall and partial cooling at upper half of the right vertical wall along with rest walls are adiabatic. In this investigation the Special attention is given to understand the effect of aspect ratio and heat source intensity i.e. Rayleigh number, Ra, on the fluid flow configuration as well as on the local and average heat transfer rates. The range of Rayleigh (Ra) and aspect ratio (A) is taken [103, 106] and [0.5, 4] respectively. The results are presented in terms of stream function (ψ), temperature (θ) and heat transfer rates (local Nusselt numbers NuL, and average Nusselt numbers Nu). The numerical experiments show that increasing of Ra implies the enhancement of thermal buoyancy force, which in turn increases the thermal convection in the cavity. As a result, the local as well as average heat transfer rate is expected to increase. The local transfer rate (NuL) is increases in the small region near the left vertical wall of the left wall of the cavity and after that it is decreases in the middle portion of heated region. And, it start to increase near to the middle point of left wall. It is also observed that the local heat transfer is increases as increases the aspect ratio. The average heat transfer rate (Nu) is increases as the aspect ratio A increases from 0.5 to 1 and beyond that it is decreases smoothly. It is also found that the heat transfer rate attains its maximum value at aspect ratio one.  相似文献   

16.
17.
This paper deals with the study of heat transfer characteristics in the laminar boundary layer flow of a visco-elastic fluid over a linearly stretching continuous surface with variable wall temperature subjected to suction or blowing. The study considers the effects of frictional heating (viscous dissipation) and internal heat generation or absorption. An analysis has been carried out for two different cases of heating processes namely: (i) Prescribed surface temperature (PST) and (ii) Prescribed wall heat flux (PHF) to get the effect of visco-elastic parameter for various situations. Further increase of visco-elastic parameter is to decrease the skin friction on the sheet. The solutions for the temperature and the heat transfer characteristics are obtained in terms of Kummers function. Received: June 16, 2004; revised: February 8, 2005  相似文献   

18.
We consider a model system made of two nonlinear equations which are non conservative. A conservation law can be obtained from these equations through linear operations only, which don't modify the shock waves. A numerical scheme based on a different mesh adapted to each variable is proposed. By choosing a shifted mesh, we have un explicit Riemann solver and we can derive a finite volume scheme. We prove a priori estimates in L norm and Total Variation for the system, which lead to a strong convergence in L1 norm towards a solution satisfying the associated conservation law.  相似文献   

19.
In this paper, we study the heat transfer in the fully developed flow of a viscoelastic fluid, a slag layer, down a vertical wall. A new constitutive relation for the stress tensor of this fluid is proposed, where the viscosity depends on the volume fraction, temperature, and shear rate. For the heat flux vector, we assume the Fourier's law of conduction with a constant thermal conductivity. The model is also capable of exhibiting normal stress effects. The governing equations are non‐dimensionalized and numerically solved to study the effects of various dimensionless parameters on the velocity, temperature, and volume fraction. The effect of the exponent in the Reynolds viscosity model is also discussed. The different cases of shear‐thinning and shear‐thickening, cooling and heating, are compared and discussed. The results indicate that the viscous dissipation and radiation (at the free surface) cause the temperature to be higher inside the flow domain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this work the coupled non-linear partial differential equations, governing the free convection from a wavy vertical wall under a power law heat flux condition, are solved numerically. For both Darcy and Forchheimer extended non-Darcy models, a wavy to flat surface transformation is applied and the governing equations are reduced to boundary layer equations. A finite difference scheme based on the Keller Box approach has been used in conjunction with a block tri-diagonal solver for obtaining the solution. Detailed simulations are carried out to investigate the effect of varying parameters such as power law heat flux exponent m, wavelength–amplitude ratio a and the transformed Grashof number Gr′. Both surface undulations and inertial forces increase the temperature of the vertical surface while increasing m reduces it. The wavy pattern observed in surface temperature plots, become more prominent with increasing m or a but reduces as Gr′ increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号