首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对轴对称正交各向异性功能梯度层合圆板稳态热传导问题进行精确分析.假设材料热传导率沿板厚方向按指数函数形式梯度分布,从正交各向异性功能梯度圆板稳态热传导的基本方程出发,利用分离变量法,获得了在上、下表面作用任意热分布情况下的精确解.通过数值算例的分析,指出材料性质的梯度变化、板厚边界条件等分析了对温度场分布的影响.所获得的精确结果,可以作为评价其它近似方法的标准解答.  相似文献   

2.
In this article, a hollow circular shaft made from functionally graded piezoelectric material (FGPM) such as PZT_5 has been studied which is rotating about its axis at a constant angular velocity ω. This shaft subjected to internal and external pressure, a distributed temperature field due to steady state heat conduction with convective boundary condition, and a constant potential difference between its inner and outer surfaces or combination of these loadings. All mechanical, thermal and piezoelectric properties except for the Poisson’s ratio are assumed to be power functions of the radial position. The governing equation in polarized form is shown to reduce to a system of second-order ordinary differential equation for the radial displacement. Considering six different sets of boundary conditions, this differential equation is analytically solved. The electro-thermo-mechanical stress and the electric potential distributions in the FGPM hollow shaft are discussed in detail for the piezoceramic PZT_5. The presented results indicate that the material in-homogeneity has a significant influence on the electro-thermo-mechanical behaviors of the FGPM rotating shaft and should therefore be considered in its optimum design.  相似文献   

3.
In this paper, the distributions of the temperature, moisture, displacement and stress of a functionally graded piezoelectric material (FGPM) circular disk rotating around its axis at a constant angular velocity under a coupled hygrothermal field are presented by a numerical method. The material properties of the FGPM circular disk are assumed to vary along the radial coordinate exponentially. First, the coupled hygrothermal field along the radius of a rotating circular disk is achieved by solving the coupled hygrothermal equations, and then the dynamic equilibrium is solved by utilizing the finite difference method. Finally, numerical results show the effects of functionally graded index, inner radius, angular speed and hygrothermal index on the hygrothermal behaviors of the FGPM circular disk. The results can be useful for the optimal design of rotating FGPM circular disks under a coupled hygrothermal field.  相似文献   

4.
研究了边界表面受均布动压力作用的功能梯度(FGM)厚壁中空圆柱体,给出了其平面应变响应下的弹性动力学解.假设材料性能(除Poisson比外)随厚度按幂律函数变化.为了得到一个精确解,将动力径向位移分为准静力部分和动力部分,导出了每个部分的一个解析解.先由Euler方程得到准静力学部分的解,再由分离变量法和正交展开法得到动力学部分的解.在不同动荷载作用下,对不同的FGM中空圆柱体,画出径向位移和应力图,并对本方法的优点进行了讨论.该解析解适用于中空圆柱体各种组合的FGM,厚度可以是任意的,初始条件也可以是任意的,壁面上均匀分布着任意形式的动压力.  相似文献   

5.
Dynamic analysis of multi-directional functionally graded annular plates is achieved in this paper using a semi-analytical numerical method entitled the state space-based differential quadrature method. Based on the three-dimensional elastic theory and assuming the material properties having an exponent-law variation along the thickness, radial direction or both directions, the frequency equations of free vibration of multi-directional functionally graded annular plates are derived under various boundary conditions. Numerical examples are presented to validate the approach and the superiority of this method is also demonstrated. Then free vibration of functionally graded annular plates is studied for different variations of material properties along the thickness, radial direction and both directions, respectively. And the influences of the material property graded variations on the dynamic behavior are also investigated. The multi-directional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material.  相似文献   

6.
Taking Young’s modulus, thermal expansion coefficient and density to be the functions of the radial coordinate, a closed form solution of rotating circular disks made of functionally graded materials subjected to a constant angular velocity and a uniform temperature change is proposed in this paper. Excellent agreement with the solution from Mathematica 5.0 indicates the correctness of the proposed closed form solution. Distributions of the radial displacement and stresses in the disks are determined with the proposed approach and how material properties, temperature change, geometric size and different material coefficients affect deformations and stresses is investigated.  相似文献   

7.
Taking Young’s modulus, thermal expansion coefficient and density to be the functions of the radial coordinate, a closed form solution of rotating circular disks made of functionally graded materials subjected to a constant angular velocity and a uniform temperature change is proposed in this paper. Excellent agreement with the solution from Mathematica 5.0 indicates the correctness of the proposed closed form solution. Distributions of the radial displacement and stresses in the disks are determined with the proposed approach and how material properties, temperature change, geometric size and different material coefficients affect deformations and stresses is investigated.  相似文献   

8.
《Applied Mathematical Modelling》2014,38(19-20):4625-4639
In this paper, the magneto-thermo-mechanical response of a functionally graded magneto-elastic material (FGMM) annular variable-thickness rotating disk is investigated. The material properties namely material stiffness, heat conduction coefficient, thermal expansion coefficient, mass density and magnetic permeability are assumed to vary continuously along the radial direction according to a power law. The thickness profile of the disk placed in a uniform magnetic field and subjected to the thermal load is assumed to be hyperbolic in nature. The effects of the magnetic field, grading index and geometric nonlinearity on the mechanical and thermal stresses of the disk are investigated. For a specific value of the grading index the maximum radial stress due to magneto-mechanical load in a mounted FGMM disk with hyperbolic convergent profile is found away from the center. This result is different from other thickness profile disks where the radial stresses are always at the center. It is observed that unlike radial stress in a mounted FGM disk subjected to mechanical load only where it is always tensile, the radial stress due to magneto-thermal load in a mounted FGMM disk can be both tensile and compressive type. It is seen that a decrease in the value of grading index invokes shifting of the location of the maximum temperature in FGMM disk with hyperbolic convergent profile towards the outer surface of the disk.  相似文献   

9.
The nonsteady temperature stresses are determined for an annular plate, an infinite plate with a circular opening, and a circular plate, whose coefficients of heat transfer from the lateral surfaces are functions of temperature.Physico-Mechanical Institute, Academy of Sciences of the Ukrainian SSR, L'vov. Translated from Mekhanika Polimerov, No. 5, pp. 949–950, September–October, 1971.  相似文献   

10.
A hollow sphere made from functionally graded piezoelectric material (FGPM) such as PZT_4 has been considered. One-dimensional analytical method for electro-thermo-mechanical response of symmetrical spheres is used. For asymmetric three-dimensional analysis, ANSYS finite element software is employed in this study. Loading is combination of internal and external pressures, a distributed temperature field due to steady state heat conduction and a constant electric potential difference between its inner and outer surfaces for analytical solution. In three-dimensional solutions closed and open spheres with different boundary conditions subjected to an internal pressure and a uniform temperature field are studied. All mechanical, thermal and piezoelectric properties except the Poisson’s ratio are assumed to be power functions of radius. It has been found from analytical solution that the induced radial and circumferential stresses of an imposed electric potential is similar to the residual stresses locked in the homogeneous sphere during the autofrettage process of these vessels. It has been concluded from the three-dimensional analysis that the magnitudes of effective stresses at all node points are higher for the clamped-clamped boundary condition and are lower for the simply-simply supported condition.  相似文献   

11.
The unsteady partial differential equations for expectation and correlation distributions of the stochastic temperature distribution in a solid are obtained, when the coefficients and the source term in the stochastic heat transfer equations are white Gaussian processes. Some solutions of the unsteady partial differential equations for expectation and correlation distributions of stochastic heat transfer are presented.  相似文献   

12.
汪忠志 《应用数学》2006,19(2):275-281
本文引入任意随机变量序列随机极限对数似然比概念,作为任意相依随机序列联合分布与其边缘乘积分布“不相似”性的一种度量,利用构造新的密度函数方法来建立几乎处处收敛的上鞅,在适当的条件下,给出了任意受控随机序列的一类随机偏差定理.  相似文献   

13.
Artur Wirowski 《PAMM》2009,9(1):261-262
Subject of the consideration is thin annular plate made of a two-phase functionally graded composte. The plate has periodically inhomogeneous microstructure slowly varying in space: the λ-periodic structure along circular coordinate, but smoothly graded apparent (averaged) properties in the perpendicular, radial direction. The aim of the contribution is to derive and apply a deterministic macroscopic model describing the free vibrations of this plate. Modeling procedure is based on tolerance averaging technique. We received, equations system with smooth coefficients. We made numerical solution of this problem, using finite difference method, and analyze influence of material proportion and microstructure size on first frequency of free vibrations. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
This paper considers magnetothermoelastic behavior of a functionally graded material (FGM) hollow cylinder, placed in a uniform magnetic field, subjected to thermal and mechanical loads. Exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow cylinders is determined by using the infinitesimal theory of magnetothermoelasticity. Numerical results indicate that the inhomogeneous constants presented in the present study are useful parameters from a design point of view in that it can be tailored for specific applications to control the stress and perturbation of magnetic field vector distributions. This research is helpful for the optimum design annular cylindrical FGM sensors/actuators.  相似文献   

15.
Cycle-transitive comparison of independent random variables   总被引:2,自引:0,他引:2  
The discrete dice model, previously introduced by the present authors, essentially amounts to the pairwise comparison of a collection of independent discrete random variables that are uniformly distributed on finite integer multisets. This pairwise comparison results in a probabilistic relation that exhibits a particular type of transitivity, called dice-transitivity. In this paper, the discrete dice model is generalized with the purpose of pairwisely comparing independent discrete or continuous random variables with arbitrary probability distributions. It is shown that the probabilistic relation generated by a collection of arbitrary independent random variables is still dice-transitive. Interestingly, this probabilistic relation can be seen as a graded alternative to the concept of stochastic dominance. Furthermore, when the marginal distributions of the random variables belong to the same parametric family of distributions, the probabilistic relation exhibits interesting types of isostochastic transitivity, such as multiplicative transitivity. Finally, the probabilistic relation generated by a collection of independent normal random variables is proven to be moderately stochastic transitive.  相似文献   

16.
This paper is concerned with the rigorous determination of the stress intensity factors of an arbitrary located and oriented angled crack in discs using the finite element method. Three different loading conditions are examined: boundary loadings resulting from disc attachments and/or interference fit with a rotating shaft, body forces resulting from rotation at a constant angular velocity and thermal stresses associated with a quadratic radial temperature distribution. Three techniques are adopted in the evaluation of the resulting mixed-mode stress intensity factors: direct extrapolation methods, virtual crack extension and J-integral method. Verification with available referenced solutions for the simple case of a radial crack is provided and merits and limitations associated with the above three methods are discussed.  相似文献   

17.
This paper presents an investigation on partially fluid-filled cylindrical shells made of functionally graded materials (FGM) surrounded by elastic foundations (Pasternak elastic foundation) in thermal environment. Material properties are assumed to be temperature dependent and radially variable in terms of volume fraction of ceramic and metal according to a simple power law distribution. The shells are reinforced by stiffeners attached to their inside and outside in which the material properties of shell and the stiffeners are assumed to be continuously graded in the thickness direction. The formulations are derived based on smeared stiffeners technique and classical shell theory using higher-order shear deformation theory which accounts for shear flexibility through shell's thickness. Displacements and rotations of the shell middle surface are approximated by combining polynomial functions in the meridian direction and truncated Fourier series with an appropriate number of harmonic terms in the circumferential direction. The governing equations of liquid motion are derived using a finite strip element formulation of incompressible inviscid potential flow. The dynamic pressure of the fluid is expanded as a power series in the radial direction. Moreover, the quiescent liquid free surface is modeled by concentric annular rings. A detailed numerical study is carried out to investigate the effects of power-law index of functional graded material, fluid depth, stiffeners, boundary conditions, temperature and geometry of the shell on the natural frequency of eccentrically stiffened functionally graded shell surrounded by Pasternak foundations.  相似文献   

18.
Using the Fourier integral method we have solved the heat conduction problem for an orthotropic shell of arbitrary Gaussian curvature with a system of thermally insulated cuts. In the process we have taken account of heat exchange on the lateral surfaces of the shells. We have studied the influence of the anistropy properties of the material on the distribution of the perturbed temperature field. Using the example of a system consisting of two cuts we have studied the dependence of jumps in the integral characteristics of the temperature on the relative locations of the cuts. Translated fromTeoreticheskaya i Prikladnaya Mekhanika, No. 24, 1993, pp. 50–54.  相似文献   

19.
We find the solution of the uncoupled problem of thermoelasticity for an infinite thermo-sensitive body with a cylindrical cavity the surface of which is loaded with a constant pressure and through which convective heat exchange with a medium of constant temperature occurs. The influences of the thermosensitivity of the material of the body on the values and characters of distributions of temperature, displacements, and the components of the stress tensor are determined.  相似文献   

20.
In this paper, the second order statistics of post buckling response of functionally graded materials plate (FGM) subjected to mechanical and thermal loading with nonuniform temperature changes subjected to temperature independent (TID) and dependent (TD) material properties is examined. Material properties such as material properties of each constituent’s materials, volume fraction index are taken as independent random input variables. The basic formulation is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear kinematic using modified C0 continuity. A direct iterative based C0 nonlinear finite element method (FEM) combined with mean centered first order perturbation technique (FOPT) proposed by last two authors for the composite plate is extended for Functionally Graded Materials (FGMs) plate with reasonable accuracy to compute the second order statistics (mean and coefficient of variation) of the post buckling load response of the FGM plates. The effect of random material properties with amplitude ratios, volume fraction index, plate thickness ratios, aspect ratios, boundary conditions and types of loadings subjected to TID and TD material properties are presented through numerical examples. The performance of outlined present approach is validated with the results available in literatures and independent Monte Carlo simulation (MCS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号