首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In the present work, a model of nonlinear deformation of stochastic composites under microdamaging is developed for the case of a composite with orthotropic inclusions, when microdefects are accumulated in the matrix. The composite is treated as an isotropic matrix strengthened by triaxial arbitrarily oriented ellipsoidal inclusions with orthotropic symmetry of the elastic properties. It is assumed that the process of loading leads to accumulation of damage in the matrix. Fractured microvolumes are modeled by a system of randomly distributed quasispherical pores. The porosity balance equation and relations for determining the effective elastic modules in the case of orthotropic components are taken as basic relations. The fracture criterion is specified as the limiting value of the intensity of average shear stresses acting in the intact part of the material. On the basis of the analytic and numerical approach, we propose an algorithm for the determination of nonlinear deformation properties of the investigated material. The nonlinearity of composite deformations is caused by the finiteness of deformations. By using the numerical solution, the nonlinear stress–strain diagrams are predicted and discussed for an orthotropic composite material for various cases of orientation of inclusions in the matrix.  相似文献   

2.
The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 45, No. 1, pp. 145–150, January–February, 2009.  相似文献   

3.
Lidija Nazarenko 《PAMM》2006,6(1):405-406
The model of nonlinear deformation of stochastic composites under microdamaging is developed for the case of threecomponent composite, when the microdamages are accumulated in the matrix. The composite is treated as isotropic matrix strengthened by two different types of spheroidal inclusions with transversally-isotropic symmetry of elastic properties. Fractured microvolumes are modeled by a system of randomly distributed quasispherical pores. The porosity balance equation and relations for determining the effective elastic modules for the case of transversally-isotropic components are taken as basic relations. The fracture criterion is assumed to be given as the limit value of the intensity of average shear stresses occurring in the undamaged part of the material. The algorithm for determination of nonlinear deformative properties of such a material is constructed. The nonlinear stress-strain diagrams for three-component concrete for the case of uniaxial tension are obtained. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
纤维复合材料中弹性波散射与动应力   总被引:1,自引:0,他引:1  
基于弹性波动理论,对纤维增强复合材料结构中弹性波多重散射与动应力集中问题进行了分析研究,给出了介质各区域弹性波分析解的表达式.根据位移与应力在各区界面处的连续条件,确定了未知弹性波模式系数.采用Hankel函数的加法定理,将不同局部坐标系中散射波场的表达式变换到了同一个局部坐标系中,以给出弹性波模式系数和动应力集中因子的表达式.分析了多相纤维基体中两个散射体的间距、界层区材料性质以及界层区和纤维核区截面尺寸的变化,对各区界面动应力集中系数的影响.分析表明,两个散射体的间距、界层区材料性质和结构尺寸的变化对复合材料的力学特性具有显著影响.作为算例,给出了纤维增强复合材料结构中各区界面动应力集中系数的数值结果,并对其进行了分析讨论.  相似文献   

5.
In the present paper, a model of deformation of stochastic composites under microdamaging is developed for the case of orthotropic composite, when the microdamages are accumulated in the matrix. The composite is treated as an isotropic matrix strengthened by three-axial ellipsoidal inclusions with orthotropic symmetry of elastic properties. It is assumed that the loading process leads to accumulation of damages in the matrix. Fractured microvolumes are modeled by a system of randomly distributed quasispherical pores. The porosity balance equation and relations for determining the effective elastic moduli for the case of a composite with orthotropic components are taken as the basic relations. The fracture criterion is assumed to be given as the limit value of the intensity of average shear stresses occurring in the undamaged part of the material. Based on the analytical and numerical approach, an algorithm for the determination of nonlinear deformation properties of such a material is constructed. The nonlinearity of composite deformations is caused by the accumulation of microdamages in the matrix. Using the numerical solution, nonlinear stress-strain diagrams for the orthotropic composite in the case of biaxial extension are obtained. Published in Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 51, No. 1, pp. 121–130, January–March, 2008.  相似文献   

6.
Solutions are presented herein of some contact problems connected with the torsion of a composite half-space. In the general case the problem of the torsion of a composite elastic half-space is examined by means of the rotation of a stiff finite cylinder welded into a vertical recess of this half-space. Moreover, the following particular problems on the torsion of such a half-space are considered.

1. 1) A composite half-space with a vertical elastic infinite core, twisted by means of the rotation of a stiff stamp affixed to the upper endplate of the elastic core.

2. 2) A half-space with a vertical cylindrical infinite hole, twisted by means of the rotation of a stiff finite cylinder welded into the upper part of this hole.

In the general case the solution of the problem reduces to the solution of an integral equation of the second kind on a half-line. The question of the solvability of this fundamental integral equation is investigated, and it is shown that its solution may be constructed by successive approximations.

Let us note that the problem of the torsion of a homogeneous half space and of an elastic layer by means of rotation of a stiff stamp has been considered by Rostovtsev [1], Reissner and Sagoci [2], Ufliand [3], Florence [4], Grilitskii [5] and others.

The problem of the torsion of a circular cylindrical rod and the half-space welded to it which are subject to a torque applied to the free endface of the rod has been considered by Grilitskii and Kizyma[6].

The torsion of an elastic half-space with a vertical cylindrical inclusion of some other material by the rotation of a stiff stamp on the surface of this half-space has been considered in [7], wherein it has been assumed that the stamp is symmetrically disposed relative to the axis of the inclusion and lies simultaneously on both materials.  相似文献   


7.
The elastic-plastic behaviour of rapidly solidified Al based (FeSi)-enriched alloys containing intermetallic compounds is considered. A new multilevel mechanical model for the “in situ” composite is proposed considering the aluminium matrix as a micropolar elastic plastic Cosserat material and the hardening phases as pure elastic ones. A two steps homogenization procedure is applied to obtain the overall properties of the multiphase “in situ“ composite, taking into account the existence of different sizes of intermetallic inclusions. A variational approach is applied to evaluate the equivalent stress on macro level at the transition from micro to macro scale. The model is developed using information provided by microstructural investigations and EDX analysis. The multistage bulk material manufacturing process from rapid solidified powders or ribbons is simulated using the Finite Element Method. The model is implemented as user subroutines into the FE code MARC. Numerical simulations are provided, corresponding to different values of metal forming parameters. The influence of the different inclusions sizes on the hardening behavior is discussed. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A unified numerical analysis model is presented to solve the free vibration of composite laminated doubly-curved shells and panels of revolution with general elastic restraints by using the Fourier–Ritz method. The first-order shear deformation theory is adopted to conduct the analysis. The admissible function is acquired by using a modified Fourier series approach in which several auxiliary functions are added to a standard cosine Fourier series to eliminate all potential discontinuities of the displacement function and its derivatives at the edges. Furthermore, the general elastic restraint and kinematic compatibility and physical compatibility conditions are imitated by the boundary and coupling spring technique respectively when the composite laminated doubly-curved panels degenerate to the complete shells of revolution. Then, the desired results are solved by the variational operation. Large quantities of numerical examples are calculated about the free vibration of cross-ply and angle-ply composite laminated doubly-curved panels and shells with different geometric and material parameters. Through the sufficient conclusions obtained from the comparison, it can be seen that highly accurate solutions can be yielded with a little computational effort. To understand the influence of different boundary conditions, lamination schemes, material and geometrical parameters on the vibration characteristics, a series of parametric studies are carried out. Lastly, results for vibration of the composite laminated doubly-curved panels and shells subject to various kinds of boundary conditions and with different geometrical and material parameters are also presented firstly, which can provide the benchmark data for other studies conducted in the future.  相似文献   

9.
Flexible-matrix composites with highly anisotropic properties have successfully been used in numerous fields to improve the performance of conventional structures or to facilitate new innovations. Many of them are designed on the basis of tubes which are produced efficiently by the filament winding process. To predict the elastic behavior of filament-wound flexible-matrix composites, aspects of the nonlinear behavior of the flexible material have to be considered, as well as the features of the distinct fiber undulation geometry inherent to the filament winding process. The present study considers these characteristics in the micromechanical modeling of the elastic behavior by including a nonlinear material model to represent the strain-dependent moduli and manufacturing-dependent geometries. The structure is characterized by a unit cell and subcells, analyzed separately and combined based on different sets of isostress and isostrain assumptions that depend on the winding angle. On the basis of experimentally obtained nonlinear lamina properties, an iterative method of solution is chosen to calculate the axial stress–strain behavior of tubes with various winding parameters. The resulting predictions are validated by testing tubes in tension and compression. The model shows good agreement with the experiments. Predictions made using the model show a strong influence of filament winding parameters on the axial modulus of flexible-matrix composite tubes.  相似文献   

10.
A relation is proposed for determining of the shear modulus of a fibrous composite material with a transversely isotropic matrix and a fibre as a function of the elastic constants of the matrix and the fibre as well as the volume fraction of each of them in the composite material. The isotropy planes of the matrix and fibre coincide and are perpendicular to the fibre axis. Two boundary value problems are solved in order to obtain the required relation: the problem of the longitudinal shear of a transversely isotropic solid cylinder that simulates the fibrous composite material and the problem of the combined longitudinal shear of a hollow and solid cylinder that simulate the matrix material and the fibre material respectively. Calculations using the proposed formula are compared with the available experimental data.  相似文献   

11.
A numerical approach for determination of the effective properties of particulate composite materials has been developed. A representative volume element (RVE) of the composite material is analyzed with help of the finite-element method. Uniform boundary displacements or tractions are applied on the boundaries of the RVE for introducing the known average strain in the RVE. Local stress and strain distributions in the RVE are calculated using the finite-element method. Different effective elastic constants can be calculated by averaging the local fields corresponding to different sets of boundary conditions. The present approach allows us to determine the effective properties of particle-reinforced composites with acceptable accuracy. The calculated effective properties of the composite are between the upper and lower Hashin—Shtrikman bounds. The results based on the present approach lead to higher stiffness of composites in comparison with analytical approaches.Institute fur Werkstoffwissenschaften, Fachberech Werkseoffwissenschaften, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany. Published in Mekhanika Kompozitnykh Materialov, Vol. 33, No. 4, pp. 450–459, July–August, 1997.  相似文献   

12.
A homogenization method is used to calculate effective material properties of periodic microstructures subjected to small, time-harmonic strain fields. The method is based on the equivalence of averaged micro-field quantities in dispersive heterogeneous media and those in effective homogeneous media with frequency dependent elastic constants. Solutions to the elastodynamic boundary value problem (BVP) are obtained from a boundary element method where periodic boundary conditions on the unit-cell are incorporated using Lagrangian multipliers. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Relations are obtained for the effective moduli of elasticity and Poisson's ratios of a laminated fiber-reinforced composite, each layer of which has at least orthorhombic symmetry. The elastic properties of the composite in terms of the elastic constants of the layer are expressed exactly, and the elastic constants of the individual layer in terms of the values for the fiber and the matrix are expressed approximately. Two approximations are considered: one corresponds to the Hashin-Shtrikman variational approach, while in the second the comparison material is assigned elastic properties equal to the Voigt or Reuss means of the values for each layer. A numerical example is worked for the combination boron fibers-epoxy resin. The results of the calculation are compared with the exact solution of the problem for a composite composed of alternating layers of boron and epoxy resin.  相似文献   

14.
A model of deformation of stochastic composites subjected to microdamage is developed for the case of orthotropic materials with microdamages accumulating in the fibers. The composite is treated as a matrix strengthened with elliptic fibers with orthotropic elastic properties. The fractured microvolumes are modeled by a system of randomly distributed quasi-spherical pores. The porosity balance equation and relations for determining the effective elastic moduli for the case of a fibrous composite with orthotropic components are used as the fundamental relations. The fracture criterion is given as a limit value of the intensity of average shear stresses occurring in the undamaged part of the material, which is assumed to be a random function of coordinates and is described by the Weibull distribution. Based on an analytical and numerical approach, the algorithm for determining the nonlinear deformation properties of such a material is constructed. The nonlinearity of composite deformations is caused by the accumulation of microdamages in the fibers. By using a numerical solution, the nonlinear stress–strain diagrams for an orthotropic composite in uniaxial tension are obtained. Translated from Mekhanika Kompozitnykh Materialov, Vol. 45, No. 1, pp. 17–30, January–February, 2009.  相似文献   

15.
In this paper, we consider a number of optimal design problems for elastic bars and plates. The material characteristics of rigidity of an elastic nonhomogeneous medium are taken as the control variables. A linear functional of the solutions to the equilibrium boundary-value problem is minimized under additional restrictions upon the control variables.Special variations of the control within a narrow strip provide a necessary condition for a strong local minimum (Weierstrass test). This necessary condition can be used for the detailed analysis of the following problems: bar of extremal torsional rigidity; optimal distribution of isotropic material with variable shear modulus within a plate; and optimal orientation of principal axes of elasticity in an orthotropic plate. For all of these cases, the stationary solutions violate the Weierstrass test and therefore are not optimal. This is because, in the course of the approximation of the optimal solution, the curve dividing zones occupied by materials with different rigidities displays rapid oscillations sweeping over a two-dimensional region. Within this region, the material behaves as a composite medium assembled of materials of the initial class.  相似文献   

16.
The elastic properties of 3D elastomeric composite materials under large deformations are considered. The investigation is based on the structural macroscopic theory of stiff and soft composites. The results of micro- and macromechanical analyses of composite materials with compressible and poorly compressible matrices are presented. The character of interaction between the fibers of various reinforcing systems in these matrices is revealed. The deformation characteristics of the composites in tension and shear are presented as functions of their orientation and loading parameters. The evolution of the configuration of a composite material with a compressible matrix during loading is traced.  相似文献   

17.
Conclusion Solutions for the elastic characteristics and the creep functions of a composite containing hollow spherical fillers as applies to the four-phase nucleus/jacket/binder/equivalent-homogeneous-material model are obtained in the study when the method of self-correspondence is used. It is demonstrated that if the two-stage approach (when the elastic characteristics of the nucleus + jacket system, and the composite are calculated in the first and second stages, respectively) yields an exact solution for the bulk modulus K* of the composite, it is highly approximate when the shear modulus G* of the composite is determined. The error of determination of G* increases considerably (by a factor of 2–2.5 when = 0.4) when Kerner's approximate solution (2) is used in lieu of solution (8) for the three-phase model within the framework of the two stage approach. Dzenis and Maksimov [5] establish by comparison with experimental data that the four-phase model provides a rather exact solution for the elastic modulus of a composite when the bulk content of hollow spheres 0.4. It is also demonstrated that use of Kerner's approximate solution (2) within the framework of the two-stage approach in predicting the creep of a composite yields an inadmissibly high error in the region of the principal relaxation transition of the binder from the glassy to the highly elastic state.This work was sponsored at the Iberoamericana University in 1993 by the Mexican National Council of Science and Technology (CONACYT).Translated from Mekhanika Kompozitnykh Materialov, Vol. 30, No. 2, pp. 177–188, March–April, 1994.  相似文献   

18.
In real composite materials an additional phase may exist between the fiber and the matrix. This phase, commonly known as the interphase, is a local region that results from the matrix bonds with the fiber surface or the fiber sizing. The differing thermal expansions or contractions of the fiber and matrix cause thermally induced stresses in composite materials. In the present study, a four-cylinder model is proposed for the determination of residual thermal stresses in unidirectional composite materials. The elastic modulus of the interphase is a function of the interphase radius and thickness. The governing equations in terms of displacements are solved in the form of expansion into a series [1]. The effective elastic characteristics are obtained using the finite element approach. The effect of the interphase thickness and different distributions of the interphase Young's modulus on the thermal residual stress field in unidirectional composite materials is investigated.For Pt. 1, see [1].Published in Mekhanika Kompozitnykh Materialov, Vol. 33, No. 2, pp. 200–214, March–April, 1997.  相似文献   

19.
Solutions of the non-linear hyperbolic equations describing quasi-transverse waves in composite elastic media are investigated within the framework of a previously proposed model, which takes into account small dissipative and dispersion processes. It is well known for this model that if a solution of the problem of the decay of an arbitrary discontinuity is constructed using Riemann waves and discontinuities having a structure, the solution turns out to be non-unique. In order to study the problem of non-uniqueness, solutions of non-self-similar problems are constructed numerically within the framework of the proposed model with initial data in the form of a “smooth” step. With time passing the solutions acquire a self-similar asymptotic form, corresponding to a certain solution of the problem of the decay of an arbitrary discontinuity. It is shown that, by changing the method of smoothing the step, one can construct any of the self-similar asymptotic forms, as was done previously in Ref. [Chugainova AP. The asymptotic behaviour of non-linear waves in elastic media with dispersion and dissipation. Teor Mat Fiz 2006;147(2):240–56] for media with terms of opposite sign, responsible for the non-linearity, although the set of admissible discontinuities and the structure of the solutions of the problems in these cases turn out to be different.  相似文献   

20.
Conclusion The use of an analytical model for determining the moduli of elasticity of composite laminates made of woven or unidirectional plies with different porosity levels was described. The analysis of aircraft composite parts with different levels of voids (porosity) was based on a method which utilizes the results of state-of-the-art nondestructive testing methods (ultrasonic through transmission, loading, or pulse/echo) as the starting data for the analytical model. The porosity distribution over the volume of the material and correlations for the nondestructive testing methods were determined for epoxy-carbon laminates with standard and stiffened binders and corroborating experiments were conducted. It was shown that the moduli of elasticity of composite laminates decrease with an increase in the porosity levels. The type, thickness, and layup of the laminate are the basic factors that affect the decrease in the elastic properties of porous composite laminates.Translated from Mekhanika Kompozitnykh Materialov, Vol. 30, No. 6, pp. 813–830, November–December, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号