首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
陈立忠  龚巧彬  陈哲 《化学进展》2021,33(8):1280-1292
超薄二维金属有机框架材料(MOF)纳米材料是MOF材料中的一类,不同于传统体相MOF材料,超薄片状结构赋予了它高比表面积、丰富的配位不饱和的金属位点等独特性质,能够有效改善MOF在催化、分离和传感等领域中的性能。本文综述了近年来国内外在超薄二维MOF纳米材料的构建及制备方法的研究进展,其中包括自上而下法、自下而上法以及独立于二者的二维氧化物模板牺牲法等。同时,本文详细讨论了超薄二维MOF纳米材料在气体吸附与气体分离、催化、能量储存和传感平台等领域的应用前景,并对未来超薄二维MOF纳米材料的研究面临的挑战和机遇做了进一步的分析。  相似文献   

2.
生物传感技术广泛地应用于疾病诊断、临床治疗、环境监测、食品安全等领域。由于二维纳米材料具有独特的物理和化学性质,使其在生物传感领域的应用研究快速发展。本文首先介绍了二维纳米材料的晶体结构和合成方法,然后总结了基于比色、荧光、液滴微流控和微流控纸基等方法与二维纳米材料结合,应用于生物传感的最新研究进展,最后对未来的发展做出了展望。  相似文献   

3.
李绍周  黄晓  张华 《化学学报》2015,73(9):913-923
对石墨烯等二维材料的研究进一步引发了人们对相似结构的其他有机、金属-有机二维层状纳米材料的浓厚兴趣. 这些二维材料由于其优异的化学可剪裁性而受到关注, 预期未来在电子器件、催化和小分子分离等方面具有广泛的用途. 这篇综述系统地介绍了目前制备有机基二维材料的自上而下和自下而上的两大类方法, 总结了有机基二维材料在生物识别、小分子分离和纯化以及电学方面的应用, 最后讨论了有机基二维材料目前在制备和性质改进方面面临的问题和未来可能发展的研究方向.  相似文献   

4.
对石墨烯等二维材料的研究进一步引发了人们对相似结构的其他有机、金属-有机二维层状纳米材料的浓厚兴趣.这些二维材料由于其优异的化学可剪裁性而受到关注,预期未来在电子器件、催化和小分子分离等方面具有广泛的用途.这篇综述系统地介绍了目前制备有机基二维材料的自上而下和自下而上的两大类方法,总结了有机基二维材料在生物识别、小分子分离和纯化以及电学方面的应用,最后讨论了有机基二维材料目前在制备和性质改进方面面临的问题和未来可能发展的研究方向.  相似文献   

5.
周晋  陈鹏鹏 《化学进展》2022,34(6):1414-1430
二维纳米材料是一类具有类似二维平面形态,且厚度在纳米级甚至数个原子层的材料,其种类繁多并且具有很多与体相材料不同的物化性质,在众多领域受到了广泛关注。二维纳米材料在催化降解、吸脱附、过滤、传感检测等领域具有可观的应用潜力,还可用于环境污染的防治。通过形貌、元素、基团、缺陷的修饰、改性和材料合成等策略可以调控二维纳米材料的性质,从而研发新的材料体系或者改善二维纳米材料的性能。本文首先归纳了二维纳米材料的种类,并重点阐述了各种改性策略的作用及研究现状,以及改性的二维纳米材料在治理水体污染、大气污染和污染物检测等方面的应用,为二维纳米材料在环境治理领域的发展现状作了系统介绍和展望。  相似文献   

6.
本文介绍了近几年来一个热门的研究领域-纳米超分子笼和具有纳米孔洞的金属-有机聚合物的研究现状和发展趋势。目前该领域的研究主要集中在:设计合成有机桥联配体并与金属离子自组装成各类具有纳米孔洞的超分子化合物和一维、二维或三维的金属-有机聚合物,应用结构化学研究手段,研究它们的自组装规律、空间结构、电子结构及其物理化学性能,寻找这两类化合物在生物工程与功能材料等领域中的应用。  相似文献   

7.
金属卤化物钙钛矿纳米材料因其丰富的化学结构和优异的光电性能,已成为一种极具应用前景的半导体材料。在钙钛矿无机框架中引入有机手性分子后,能够比较容易地得到手性钙钛矿纳米材料,从而可以极大地推动智能光电材料和自旋电子器件的快速发展。本文将综述手性钙钛矿纳米材料的构筑与手性产生机理的最新研究进展,包括一维手性钙钛矿纳米线、二维及准二维手性有机-无机杂化钙钛矿纳米片、三维手性钙钛矿纳米晶、超分子组装体系中诱导的手性钙钛矿纳米晶等。值得注意的是,不同种类的手性钙钛矿纳米材料在圆二色性、圆偏振发光、铁电性、自旋电子学等方面展现出优异的光电性能及巨大的应用前景。但是,有关手性钙钛矿纳米材料的研究目前还处于初级阶段,其中很多机理还存在争议,许多基础性和应用型的工作也有待开展。  相似文献   

8.
基于各种电化学过程的能源转化技术是未来可持续能源利用和发展的关键, 而催化剂在其中扮演着非常重要的角色. 二维金属纳米材料因其独特的物理化学性质在许多电催化反应中都展现出巨大的应用潜力, 也因此受到了广泛关注. 本文介绍了二维金属纳米材料的常见合成方法与策略, 并综合评述了近年来该类材料在电催化应用领域中的研究进展, 重点探讨了材料的组分和微观结构等因素对其性能的影响机理, 最后对二维金属纳米材料目前所面临的挑战以及未来的研究方向进行了总结与展望.  相似文献   

9.
新型二维纳米材料在电化学领域的应用与发展   总被引:1,自引:0,他引:1  
以石墨烯为代表的新型二维纳米材料具有独特的结构和优异的电子特性,在电化学各领域具有巨大的应用潜力。 本综述总结了新型二维纳米材料在电化学各领域(能源存储、能源转化和电化学传感)的研究现状和存在的问题。 展望了二维纳米材料在电化学领域的发展趋势。  相似文献   

10.
荧光纳米生物传感平台由于具有灵敏度高、选择性好、操作简单、成本低、实时监测等特点,吸引了广泛的关注。近年来,随着纳米技术的飞速发展,具有纳米结构的材料(纳米材料)在生物传感领域显示出独特的优势。与传统材料相比,纳米材料显示出独特的物化性质,如光学、电学、机械、催化和磁性等。金属(如Au、Ag、Cu及其合金)纳米簇(MNCs)是纳米科学和纳米技术领域中一种新颖的多功能纳米材料,其通常由几个到几十个金属原子组成,其核的尺寸通常小于2 nm。由于其发光能力强、易于合成和进行表面功能化、生物相容性好、尺寸超小、毒性低等优点,金属纳米簇在能源催化、医学诊断、电子器件、生物传感等领域得到了广泛的应用。此外,金属纳米簇的荧光性能极佳(如大的斯托克斯位移、可调节的荧光、高的光学稳定性和荧光量子产率等),因此被作为荧光纳米探针广泛应用于生物传感领域。该综述介绍了近年来基于不同构建机制的金属纳米簇基的传感平台的研究进展,及其在检测离子、生物分子、pH和温度传感等方面的应用。相信该综述能为从不同传感机理构建更具前景的生物传感器提供一些新见解和理论指导。  相似文献   

11.
Due to their unique electronic and structural properties triggered by high atomic utilization and easy surface modification, two-dimensional(2D) materials have prodigious potential in electrocatalysis for energy conversion technology in recent years. In this review, we discuss the recent progress on two-dimensional nanomaterials for electrocatalysis. Five categories including metals, transition metal compounds, non-metal, metal-organic framework and other emerging 2D nanomaterials are successively introduced. Finally, the challenges and future development directions of 2D materials for electrocatalysis are also prospected. We hope this review may be helpful for guiding the design and application of 2D nanomaterials in energy conversion technologies.  相似文献   

12.
Silicon nanomaterials and nanostructures exhibit different properties from those of bulk silicon materials based on quantum confinement effects. They are expected to lead to the development of new applications of silicon, in addition to wide use in semiconductor devices. Aside from industrial interest, intriguing issues of academic interest still remain with respect to the origins of their characteristic properties. Zero- and one-dimensional crystalline silicon nanomaterials have been synthesized, to date, by using many methods and there has been rapid progress in size control and modification procedures. However, there have been only a few examples of silicon nanomaterials with atomic-order thickness akin to carbon nanomaterials, such as two-dimensional silicon nanosheets. Moreover, mass production of silicon nanomaterials with relatively low cost is not easily achievable, due to the typically severe conditions required for fabrication, such as high temperature and ultralow pressure. Recently, we have developed a soft synthetic method for silicon nanosheets with chemical surface modification in a solution process. This review provides methods for the synthesis and modification of silicon nanosheets and other silicon nanomaterials with examples of their potential applications.  相似文献   

13.
As emerging two-dimensional materials, metal-organic framework(MOF) nanosheet composites possess many unique physical and chemical properties, thus being expected to be widely applied in gas separation and adsorption, energy conversion and storage, heterogeneous catalysis, sensing as well as biomedicine. In this review, we first introduce the methods for integrating MOF nanosheets with other materials to prepare multifunctional composites. Next, the applications of MOF nanosheet composites in ve...  相似文献   

14.
Two-dimensional(2D) nanomaterials such as transition metal dichalcogenides(TMDs) and graphene have attracted extensive interest as emergent materials, owing to their excellent properties that favor their future use in electronic devices, catalysis, optics, and biological- or energy-relevant areas. However, 2D nanosheets tend to easily restack and condense, which weakens their performance in many of these applications. Assembling these 2D nanosheets as building blocks for three-dimensional(3D) architectures not only maintains the intrinsic performances of the 2D nanostructures but also synergistically makes use of the advantages of the 3D microstructures to improve the overall material properties. In this critical review, we will highlight recent developments of sundry 2D nanosheet-assembled 3D architectures, including their design, synthesis, and potential applications. Their controllable syntheses, novel structures, and potential applications will be systematically explained, analyzed, and summarized. In the end, we will offer some perspective on the challenges facing future advancement of this field.  相似文献   

15.
《中国化学快报》2022,33(10):4437-4448
For more than a decade, the exfoliation of graphene and other layered materials has led to a tremendous amount of research in two-dimensional (2D) materials, among which 2D transition metal chalcogenides (TMCs) nanomaterials have attracted much attention in a wide range of applications including photoelectric devices, lithium-ion batteries, catalysis, and energy conversion and storage owing to their unique photoelectric physical properties. With such large specific surface area, strong near-infrared (NIR) absorption and abundant chemical element composition, 2D TMCs nanomaterials have become good candidates in biomedical imaging and cancer treatment. This review systematically summarizes recent progress on 2D TMCs nanomaterials, which includes their synthesis methods and applications in cancer treatment. At the end of this review, we also highlight the future prospects and challenges of 2D TMCs nanomaterials. It is expected that this work can provide the readers with a detailed overview of the synthesis of 2D TMCs and inspire more novel functional biomaterials based on 2D TMCs for cancer treatment in the future.  相似文献   

16.
Two-dimensional nanomaterials, especially graphene and single- or few-layer transition metal dichalcogenide nanosheets, have attracted great research interest in recent years due to their distinctive physical, chemical and electronic properties as well as their great potentials for a broad range of applications. Recently, great efforts have also been devoted to the controlled synthesis of thin nanostructures of metals, one of the most studied traditional materials, for various applications. In this minireview, we review the recent progress in the synthesis and applications of thin metal nanostructures with a focus on metal nanoplates and nanosheets. First of all, various methods for the synthesis of metal nanoplates and nanosheets are summarized. After a brief introduction of their properties, some applications of metal nanoplates and nanosheets, such as catalysis, surface enhanced Raman scattering (SERS), sensing and near-infrared photothermal therapy are described.  相似文献   

17.
Since mechanical exfoliation of graphene in 2004, unprecedented scientific and technological advances have been achieved in the development of two-dimensional (2D) nanomaterials. These 2D nanomaterials exhibit various unique mechanical, physical and chemical properties on account of their ultrathin thickness, which are highly desirable for many applications such as catalysis, optoelectronics, energy storage/conversion, as well as disease diagnosis and therapeutics. In this review, we summarized recent progress on the design and fabrication of functional 2D nanomaterials capable of being applied for the cancer treatment including drug delivery, photodynamic therapy, and photothermal therapy. Their anticancer mechanisms were discussed in detail, and the related safety concerns were analyzed based on current research developments. This review is expected to provide an insight in the field of 2D nanostructured materials for anticancer applications.  相似文献   

18.
This review will focus on the synthesis, arrangement, structural assembly, for current and future applications, of 1D nanomaterials (tubes, wires, rods) in 2D and 3D ordered arrangements. The ability to synthesize and arrange one dimensional nanomaterials into ordered 2D or 3D micro or macro sized structures is of utmost importance in developing new devices and applications of these materials. Micro and macro sized architectures based on such 1D nanomaterials (e.g. tubes, wires, rods) provide a platform to integrate nanostructures at a larger and thus manageable scale into high performance electronic devices like field effect transistors, as chemo- and biosensors, catalysts, or in energy material applications. Carbon based, metal oxide and metal based 1D arranged materials as well as hybrid or composite 1D materials of the latter provide a broad materials platform, offering a perspective for new entries into fascinating structures and future applications of such assembled architectures. These architectures allow bridging the gap between 1D nanostructures and the micro and macro world and are the basis for an assembly of 1D materials into higher hierarchy domains. This critical review is intended to provide an interesting starting point to view the current state of the art and show perspectives for future developments in this field. The emphasis is on selected nanomaterials and the possibilities for building three dimensional arrays starting from one dimensional building blocks. Carbon nanotubes, metal oxide nanotubes and nanowires (e.g. ZnO, TiO(2), V(2)O(5), Cu(2)O, NiO, Fe(2)O(3)), silicon and germanium nanowires, and group III-V or II-VI based 1D semiconductor nanostructures like GaS and GaN, pure metals as well as 1D hybrid materials and their higher organized architectures (foremost in 3D) will be focussed. These materials have been the most intensively studied within the last 5-10 years with respect to nano-micro integration aspects and their functional and application oriented properties. The critical review should be interesting for a broader scientific community (chemists, physicists, material scientists) interested in synthetic and functional material aspects of 1D materials as well as their integration into next higher organized architectures.  相似文献   

19.
The fascinating properties of single-layer graphene isolated by mechanical exfoliation have inspired extensive research efforts toward two-dimensional (2D) materials. Layered compounds serve as precursors for atomically thin 2D materials (briefly, 2D nanomaterials) owing to their strong intraplane chemical bonding but weak interplane van der Waals interactions. There are newly emerging 2D materials beyond graphene, and it is becoming increasingly important to develop cost-effective, scalable methods for producing 2D nanomaterials with controlled microstructures and properties. The variety of developed synthetic techniques can be categorized into two classes: bottom-up and top-down approaches. Of top-down approaches, the exfoliation of bulk 2D materials into single or few layers is the most common. This review highlights chemical and physical exfoliation methods that allow for the production of 2D nanomaterials in large quantities. In addition, remarkable examples of utilizing exfoliated 2D nanomaterials in energy and environmental applications are introduced.  相似文献   

20.
The dimensionality decrease from three-dimensional (3D) bulk to two-dimensional (2D) nanosheets was expected to made a significant influence on the physical-chemical properties of layered materials, which are of importance for materials design with enhanced functionalities. Here, in this work, we have demonstrated that a layered material, that has shown paramagnetic behavior at 3D bulk state, has displayed remarkable antiferromagnetic behavior with Neel temperature large to be about 140 K for the 2D nanosheets. This dramatical variation has been interpreted as the spin canting of the center metal ions as a result of enhancement in metal-to-ligand charge transfer between ligand and metal center, and d-d transition for metal ions, upon exfoliation. As a consequence, thermal and light irradiation-induced reversible spin-state switching, for both in colloidal suspension and at solid state, have been observed with 2D nanosheets. Compared with the performance enhancement in the literature, this kind of dimensionality decrease leading to subversive performance variations may open a new drive for creation of novel functions with nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号