首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A new class of M(II)–Hg(II) (M=Cu(II), Co(II), Ni(II)) mixed-metal coordination polymers, Cu(2-pyrazinecarboxylate)2HgCl2 (4), [Co(2-pyrazinecarboxylate)2(HgCl2)2] · 0.61H2O (5) and [Ni(2-pyrazinecarboxylate)2(HgCl2)2] · 0.77H2O (6), have been prepared by self assembly of metal-containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2(M=Cu(II), Co(II), Ni(II)), with HgCl2. Compounds 46 were characterized fully by IR, elemental analysis and single crystal X-ray diffraction. Compound 4 crystallized in the monoclinic space group C2/c, with a=17.916(5) Å, b=7.223(2) Å, c=13.335(4) Å, β=128.726(3)°, V=1346.2(6) Å3, Z=4. It contains alternating Hg(II) and Cu(II) metal centers that are cross-linked by 2-pyrazinecarboxylate spacers and chlorine co-ligands to generate a unique three-dimensional Hg(II)–Cu(II) mixed metal framework. Compound 5 crystallized in the triclinic space group P , with a=6.3879(7) Å, b=6.6626(8) Å, c=13.2286(15) Å, α=96.339(2)°, β=91.590(2)°, γ=113.462(2)°, V=511.71(10) Å3, Z=1. Compound 6 also crystallized in the triclinic space group P , with a=6.3543(8) Å, b=6.6194(8) Å, c=13.2801(16) Å, α=96.449(2)°, β=92.263(2)°, γ=113.541(2)°, V=506.67(11) Å3, Z=1. Compounds 5 and 6 are isostructural and in the solid state the Hg(II)M(II)Hg(II) units are connected by Hg2Cl2 linkages to produce a novel M(II)–Hg(II) (M=Co(II), Ni(II)) zigzag mixed-metal chain, in which a new type of M–M′–M′–M array was observed. The metal containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2 (M=Cu(II), Co(II), Ni(II)), exhibit different connectivities to HgCl2 depending on the metal cation contained within them.  相似文献   

2.
The reaction of dimeric rhodium precursor [Rh(CO)2Cl]2 with two molar equivalent of 1,1,1-tris(diphenylphosphinomethyl)ethane trichalcogenide ligands, [CH3C(CH2P(X)Ph2)3](L), where X = O(a), S(b) and Se(c) affords the complexes of the type [Rh(CO)2Cl(L)] (1a–1c). The complexes 1a–1c have been characterized by elemental analyses, mass spectrometry, IR and NMR (1H, 31P and 13C) spectroscopy and the ligands a–c are structurally determined by single crystal X-ray diffraction. 1a–1c undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I and C6H5CH2Cl to give Rh(III) complexes of the types [Rh(CO)(COR)ClXL] {R = –CH3 (2a–2c), –C2H5 (3a–3c); X = I and R = –CH2C6H5 (4a–4c); X = Cl}. Kinetic data for the reaction of a–c with CH3I indicate a first-order reaction. The catalytic activity of 1a–1c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 1564–1723) is obtained compared to that of the well-known commercial species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature 130 ± 2 °C, pressure 30 ± 2 bar and time 1 h.  相似文献   

3.
1,4-Dimethylpiperazine mono-betaine (1-carboxymethyl-1,4-dimethylpiperazinium inner salt, MBPZ) crystallizes as monohydrate. The crystals are orthorhombic, space group Pccn. Two MBPZ molecules and two water molecules form a cyclic oligomer, (MBPZ·H2O)2. The O–H···O and O–H···N hydrogen bonds are of 2.769(1) and 2.902(1) Å, respectively. The dimers interact with the neighboring molecules through the C–H···O hydrogen bonds of 3.234(1) Å. The piperazine ring assumes a chair conformation with the N(4)–CH3 and N+(1)–CH2COO groups in the equatorial position and the N+(1)–CH3 group in the axial one. The FTIR spectrum is compared with that calculated by the B3LYP/6-31G(d,p) level of theory.  相似文献   

4.
Lewis-base mediated fragmentation of polymeric nickel(II) fumarate and oxalate are attempted using chelating σ-donor diamines like ethylenediamine (en) and 1,3-diaminopropane (dap) in various conditions which yielded [Ni(en)3](fum)·3H2O (1), [Ni(en)3](ox) (2), [Ni(dap)2(fum)] (3) and [Ni(dap)(ox)]·2H2O (4). While 1 and 2 are molecular products each containing octahedral [Ni(en)3]2+ moieties and the anionic dicarboxylate species, 3 and 4 are dap-incorporated polymeric products. The fumarate derivative 1 containing [Ni(en)3]2+ moieties crystallizes in the monoclinic space group C2/c with a = 17.899(4) Å, b = 11.747(2) Å, c = 10.748(2) Å, β = 125.59(3)°, V = 1837.7(6) Å3, Z = 4, while the oxalate analogue 2 is seen to be in the trigonal space group P−31c with a = 8.8770(13) Å, b = 8.8770(13) Å, c = 10.482(2) Å, γ = 120°, V = 715.3(2) Å3, Z = 2. The octahedral [Ni(en)3] units in both 1 and 2 are seen to be strongly H-bonded to the dicarboxylate moieties through the coordinated en units leading to a three-dimensional network. However, in 1 the water molecules also take part in the H-bonding and contribute to the overall 3D structure. In both 1 and 2 the crystal packing is done with the [Ni(en)3]2+ units with absolute configuration Λ(δδδ) and its mirror conformer with Δ configuration in exactly equal numbers. Spectral (IR and UV–Visible) and magnetic measurements were carried out and some of the ligand-field parameters like Dq, B and β were evaluated for all the four compounds. These values suggest the presence of octahedrally coordinated nickel(II) in all the four complexes. Spectral data suggest that 3 has the two chelating dap moieties and the fumarate coordinated in η1 form through both its carboxylate moieties while 4 has one chelating dap and the oxalate moiety coordinated in η4-bis-chelating form. Though both 1 and 2 are made of the same type of [Ni(en)3]2+ units their thermograms give entirely different thermal features; 1 showing three clearly successive and step-wise dissociation of each en unit while 2 having a combined loss of two en units in the first thermal step. The relevant thermodynamic and kinetic parameters like Ea and ΔS also could be evaluated for various thermal steps for the compounds 14 using Coats–Redfern equation.  相似文献   

5.
Oxidation of [1.1]ferrocenylruthenocenophane with a large excess and 1.5 equivalents of iodine gives dicationic iodo[1.1]ferrocenylruthenocenophanium2+I3 · 0.5I22 (1) and monocationic [1.1]ferrocenylruthenocenophanium+I3 (2) salts respectively. The structures of 1 and 2 were analyzed by single-crystal X-ray diffraction studies. The crystal form of 1 is monoclinic space group C2/c, A = 21.35](5), B = 20.594(5), C = 17.397(4) Å, β = 124.17(1)°, Z = 8, and the final R = 0.068 and Rw = 0.070. The cation formulated as [FeIII(C5H4CH2C5H4)2RuIVI]2+ exists in a syn-conformation as in the cases of the neutral compound. The distance between the RuIV and FeII is 4.656(4) Å, which is much shorter than the value of the neutral compound (4.792(2) Å), and the bond angle of I---RuIV,FeIII is 81.26°. The dihedral angle between the two η5-C5H4 (fulvenide) rings on the RuIV moiety is 37.56° due to the RuIV---I bond (2.758(3) Å). These two rings of FeIII and RuIV moieties are essentially eclipsed. The unit cell has three kinds of I3 (I3a, I3b and I3c) and one I2, and the formula of 1 is given as [FeIII(C5H4CH2CSH4)2RuIVI]2+I3 · 0.5(I3)2 · 0.5I2. The crystal of 2 formulated as [FeIII(C5H4CH2C5H4)2RuII]+I3 is triclinic space group

, and the final R = 0.067 and Rw = 0.068. The unit cell has two independent molecules (unit A and B); i.e. two kinds of distance between the RuII and FeIII, are observed; one (A) is 4.615(3) and the other (B) is 4.647(3) α. The two η5-C5H4 rings of both FeIII and RuII are essentially staggered and the dihedral angles between the rings of FcH and RcH moieties are less than 5.8°. Typical ferrocenium-type broad singlet 57Fe-Mössbauer lines are observed for both salts (1, 2) at all temperatures.  相似文献   

6.
The crystal structure of the title compound was determined (crystal data at 143 K: triclinic, space group P−1, Z=4, a=9.538(2) Å, b=11.638(2) Å, c=14.473(2) Å, α=88.647(3)°, β=89.875(3)°, γ=83.835(3)°, V=1596.9(4) Å3). In the crystal there exist two kinds of tetrameric O–HO hydrogen-bond (H-bond) systems that are quite similar to each other. The oxygen atoms accept also intermolecular C–HO H-bonds. The two types of the H-bonds connect the molecules to an infinite two-dimensional supramolecular unit, the stacking of which is aided by an intermolecular C–Hπ H-bond. A phase transition with ΔHt=4.4±0.1 kJ/mol was found at around 420 K.  相似文献   

7.
A crystallographic investigation of anion–π interactions and hydrogen bonds on the preferred structural motifs of molybdenum(VI) complexes has been carried out. Two molybdenum(VI) network polymers MoO2F4·(Hinca)2 (1) and MoO2F3(H2O)·(Hinpa) (2), where inca = isonicotinamide and inpa = isonipecotamide, have been synthesized, crystallographically characterized and successfully applied to alcohol oxidation reaction. Complex 1 crystallizes in the monoclinic space C2/c: a = 16.832(3) Å, b = 8.8189(15) Å, c = 12.568(2) Å, β = 118.929(3)°, V = 1560.1(5) Å3, Z = 4. Complex 2 crystallizes in the triclinic space P-1: a = 5.459(2) Å, b = 9.189(4) Å, c = 12.204(5) Å, α = 71.341(6)°, β = 81.712(7)°, γ = 77.705(7)°, V = 564.8(4) Å3, Z = 2. Complex 1 consists of hydrogen bonding and anion–π interactions, both of which are considered as important factors for controlling the geometric features and packing characteristics of the crystal structure. The geometry of the sandwich complex of [MoO2F4]2− with two pyridine rings indicates that the anion–π interaction is an additive and provides a base for the design and synthesis of new complexes. For complex 2, the anions and the protonated inpa ligands form a 2D supramolecular network by four different types of hydrogen contacts (N–HF, N–HO, O–HF and O–HO). The catalytic ability of complexes 1 and 2 has also been evaluated by applying them to the oxidation of benzyl alcohol with TBHP as oxidant.  相似文献   

8.
The crystal and molecular structure of potassium aquapentachloroiridate(III) (K2[Ir(H2O)Cl5]) was reported. The [Ir(H2O)Cl5]2− anions are nearly octahedral, the axial Ir–Cl bond (2.322(2) Å) being shorter than the equatorial ones (2.346(2)–2.360(2) Å); the Ir–O bond length is 2.090(4) Å. Ir(III) chloride complexes with 2,2′-bipyridine (LL = bpy) or 1,10-phenanthroline (LL = phen), of the general formulae K[Ir(LL)Cl4] and cis-[Ir(LL)2Cl2]Cl, were studied by far-IR and 1H–13C, 1H–15N HMBC/HMQC/HSQC–NMR. High-frequency 1H NMR coordination shifts (Δ1Hcoord = δ1Hcomplex − δ1Hligand; max. ca. +1 ppm) were noted for [Ir(LL)Cl4] anions, while for cis-[Ir(LL)2Cl2]+ cations they had variable sign and magnitude (max. ca. ±1 ppm); they were dependent on the proton position, being mostly expressed for the nitrogen-adjacent hydrogens (H(6) for bpy, H(2) for phen). 13C NMR signals were high-frequency shifted (by max. ca. 8 ppm), whereas all 15N nuclei were shifted to the lower frequency (by ca. 105–120 ppm). The experimental 1H, 13C, 15N NMR chemical shifts were reproduced by semi-empirical quantum-chemical calculations (B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*).  相似文献   

9.
In the presence of CoCl2·6H2O and dppm (bis(diphenylphosphino) methane), the reaction of TCNQ (7,7,8,8-tetracyanoquinodimethane) molecules by [2+2] cycloaddition forms a p-tricyanovinylphenyldicyanomethide ion (PCQ), which has been obtained as one anion unit in one new compound [Co(dppmdo)3][PCQ]2·H2O 1 (dppmdo = bis(diphylphospine oxide) methane). Its structure was determined by X-ray crystallography: 1 crystallizes in with a = 14.174(3) Å, b = 19.553(4) Å, c = 19.776(4) Å, α = 112.72(3)°, β = 95.43(3)°, γ = 110.79(3)°, and Z = 2. It was characterized by IR spectra, UV–Vis spectra, and cyclic voltammogram. Magnetic properties indicate that no magnetic coupling between PCQ and [Co(dppmdo)3]2+ unit.  相似文献   

10.
REDOR technique was applied to natural abundance 13C nuclei coupled to a singly labeled 15N nucleus to determine the 13C, 15N interatomic distances simultaneously in crystalline ammonium [15N] -glutamate monohydrate (1). Consequently, the interatomic C–N distances between 15N and 13C=O, 13Cα, 13Cβ, 13Cγ, and 13Cδ carbon nuclei for 1 were determined with a precision of ±0.15 Å, after the experimental conditions such as the location of samples in the rotor, length of π pulse etc. were carefully optimized. 13C-REDOR factors for three spin system, (ΔS/S0)CN1N2, and the sum of two isolated 2-spin system, (ΔS/S0)*=(ΔS/S0)CN1+(ΔS/S0)CN2, were further evaluated by the REDOR measurements on isotopically diluted 1 in a controlled manner. Subsequently, the intra- and intermolecular C–N distances were separated by searching the minima in the contour map of root mean square deviation (RMSD) between the theoretically and experimentally obtained (ΔS/S0)* values against two interatomic distances, rC–N1 and rC–N2. When the intramolecular C–N distance (rC–N1) of the particular carbon nucleus is substantially shorter than the intermolecular one (rC–N2), C–N distances within a single molecule were obtained with an accuracy of ±0.06 Å as in the cases of C=O, Cα and Cβ carbon nuclei. C–N distances between the molecule in question and the nearest neighboring molecules can be also obtained, although accuracy was lower. On the contrary, it was difficult to determine the interatomic distances in the same molecule when the intermolecular dipolar contribution is larger than the intramolecular one as in the case of Cδ carbon nucleus.  相似文献   

11.
The crystal structure of piperazinium(2+) selenate monohydrate has been resolved; this substance crystallizes in the monoclinic space group P21/n, a=6.4586(8), b=11.8335(7), c=11.8065(7) Å, β=100.990(8)°; V=885.80(13) Å5, Z=4, R=0.0446 for 1556 observed reflections. A similar compound, N,N′-dimethylpiperazinium(2+) selenate dihydrate, crystallizes in a triclinic system with space group P and lattice parameters a=6.7370(8), b=7.9845(9), c=12.3802(12) Å, α=92.435(9)°, β=100.219(9)°, γ=114.699(10)°; V=590.34(11) Å3, Z=2, R=0.0311 for 2071 observed reflections. While, in the former structure, the cations of piperazinium(2+) in the chair conformation are arranged roughly plane-parallel above one another, in the second substance, the N,N′-dimethylpiperazinium (2+) ions lie approximately perpendicularly above one another. The FTIR and FT Raman spectra of both test substances have been measured and studied. The thermoanalytical properties were studied using TG, DTG, and DTA methods in the temperature range 293–533 K. DSC measurements were carried out in the temperature range 95–343 K. No phase transition was found in this temperature region for either of the compounds.  相似文献   

12.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

13.
Two new phenol based macroacyclic Schiff base ligands, 2,6-bis({N-[2-(phenylselenato)ethyl]}benzimidoyl)-4-methylphenol (bpebmpH, 1) and 2,6-bis({N-[3-(phenylselenato)propyl]}benzimidoyl)-4-methylphenol (bppbmpH, 2) of the Se2N2O type have been prepared by the condensation of 4-methyl-2,6-dibenzoylphenol (mdbpH) with the appropriate (for specific reactions) phenylselenato(alkyl)amine. These ligands with Cu(II) acetate monohydrate in a 2:1 molar ratio in methanol form complexes of the composition [(C6H2(O)(CH3){(C6H5)CN(CH2)nSe(C6H5)}{(C6H5)CO}2Cu] (3 (n = 2), 4 (n = 3)) with the loss of phenylselenato(alkyl)amine and acetic acid. In both these complexes, one arm of the ligand molecule undergoes hydrolysis, and links with Cu(II) in a bidentate (NO) fashion, as confirmed by single crystal X-ray crystallography of complex 3. The selenium atoms do not form part of the copper(II) distorted square planar coordination sphere which has a trans-CuN2O2 core. The average Cu–N and Cu–O distances are, respectively, 1.973(3) and 1.898(2) Å. The N–Cu–N and O–Cu–O angles are, respectively, 167.4(11)° and 164.5(12)°. The compounds 1–4 have been characterized by elemental analysis, conductivity measurements, mass spectrometry, IR, electronic, 1H and 77Se{1H} NMR spectroscopy and cyclic voltammetry. The interaction of complex 3 with calf thymus DNA has been investigated by a spectrophotometric method and cyclic voltammetry.  相似文献   

14.
The hydrothermal reaction of 3,5-pyridinedicarboxylic acid (pydcH2) and Co(NO3)2 or Ni(NO3)2 in the presence of 4,4′-bipyridine results in two novel compounds Co(pydc)(H2O)2 (1) and Ni(pydc)(H2O) (2). Crystal data: 1, monoclinic, C2/c, a=9.900(2), b=11.984(2), c=7.3748(15) Å, β=105.37(3)°, V=843.7(3) Å3, Z=4; 2, monoclinic, P21/c, a=7.7496(6), b=15.0496(11), c=6.4224(5) Å, β=108.437(1)°, V=710.59(9) Å3, Z=4. The structure of 1 is composed of honeycomb layers built up from {CoO4N} trigonal bipyramids and 3,5-pyridinedicarboxylate bridges. The structure of 2 adopts a three-dimensional framework structure in which the Ni atoms are coordinated by the pydc bridges both within the honeycomb layer and between the layers. The magnetic properties of 1 and 2 have been investigated.  相似文献   

15.
[C4H9)4N]2[Mo2O7] reacts with a variety of organic species containing α-diketone groups to give tetranuclear complexes of general composition [RMo4O15X]3−. The complexes [(C4H9)4N]3[(C9H4O)Mo4O15(OCH3)] (I), [(C4H9)4N]3[(C14H10)Mo4O15(C6H5CO2)] (11) and [(C4H9)4N]3[(C14H8)Mo4O15(OH)] (III) were synthesized from the reactions of dimolybdate with ninhydrin, benzil and phenanthraquinone, respectively. Complex II may also be prepared from dimolybdate and benzoin in acetonitrile-methanol solution, from which it co-crystallizes with the binuclear species [(C4H9)4N]2[Mo2O5(C6H5C(O)C(O)C6H5)2] · CH3CN · CH3OH (IV). Complexes I–III exhibit the tetranuclear core, previously described for the α-glyoxal derivatives [(C4H9)4N]3[(HCCH)Mo4O15X], where X = F or HCO2. The ligands may be formally described as diketals, formed by insertion of ligand carbonyl subunits into molybdenum-oxygen bonds. The structures I–III differ most dramatically in the identity and coordination mode of the anionic ligand X which occupies a position opposite the diketal moiety relative to the [Mo4O11]2+ central cage. Thus, I exhibits a doubly bridging methoxy group in this position, while II possesses a benzoate ligand with an unusual μ3-O,O′coordination mode. Complex III presents a hydroxy-group unsymmetrically bonded to three of the molybdenum centres. The stereochemical consequences of the various coordination modes are discussed. Crystal data: Compound I, monoclinic space group Pc, a = 24.888(2), b = 12.897(3), c = 24.900(3) Å, β = 101.94(2)°, Dcalc = 1.28 g cm−1 for Z = 4. Structure solution and refinement based on 8695 reflections with Fo 6σ(Fo) (Mo-Kα, λ = 0.71073 Å) converged at a conventional discrepancy factor of 0.060. Compound II, orthorhombic space group Pbca, a = 20.426(6), b = 26.916(6), c = 32.147(7) Å, V = 17673.2(20) Å3, Dcalc = 1.33 g cm−3 for Z = 8; 5224 reflections, R = 0.076. Compound III, tetragonal space group I41/a, a = b = 48.129(6), c = 13.057(2) Å, V = 30246.2(12) Å3, Dcalc = 1.35 g cm−3 for Z = 16; 5554 reflections, R = 0.053. Compound IV, orthorhombic space group Pnca, a = 16.097(4), b = 16.755(4), c = 25.986(7) Å, V = 7008.1(13) Å3, Z = 4, Dcalc = 1.18 g cm−3 ; 2944 reflections, R = 0.061.  相似文献   

16.
The complex [Pt(5,5′-dmbipy)Cl4] (1) (5,5′-dmbipy is 5,5′-dimethyl-2,2′-bipyridine) was prepared from the reaction of H2PtCl6·6H2O with 5,5′-dimethyl-2,2′-bipyridine in methanol. The same method was employed to make [Pt(6-mbipy)Cl4] (2) (6-mbipy is 6-methyl-2,2′-bipyridine). Both complexes were characterized by elemental analysis, IR, UV–Vis, 1H NMR, 13C NMR and 195Pt NMR spectroscopy. Their solid state structures were determined by the X-ray diffraction method.  相似文献   

17.
The reaction of hydrogen sulphide with [Co(H2O)6](BF4)2 and triethylphosphine in the presence of sodium tetraphenylborate or tetrabutylammonium hexafluorophosphate gave the paramagnetic clusters [Co63-S)8(PEt3)6](Y) (Y = BPh4, (1), PF6, (2)). These compounds can be easily reduced by sodium napthalenide to the diamagnetic species [Co63-S)8(PEt3)6] · 2C4H8O (3). The molecular structures of 1 and 3 have been established by single-crystal X-ray diffraction methods. Crystal data: (1) space group P , a = 19.481(9), b = 15.562(7), c = 12.390(b) Å, α = 92.70(8), β = 94.50(7), γ = 94.10(9)°, Z = 2, (3) space group R , a = 11.780(6) Å, α = 92.50(7)°, Z = 1. Both structures were solved by the heavy atom method and refined by full-matrix least-squares techniques to the conventional R factors values of 0.050 for 1 and 0.044 for 3 on the basis of 4251 and 1918 observed reflections, respectively. The two clusters [Co63-S)8)(PEt3)6]1+,0 are isostructural, the inner core consisting of an octahedron of cobalt atoms with all the faces symmetrically capped by triply bridging sulphur atoms. Each metal centre is additionally linked to a triethylphosphine group so that each cobalt atom is co-ordinated by four sulphur atoms and one phosphorus in a distorted square pyramidal environment. The addition of one electron whilst leaving unchanged the geometry of the inner framework, induces small changes in the structural parameters, the average Co---Co and Co---P distances being 2.794 (3) and 2.162 (2) Å for 1 and 2.817 (3) and 2.138 (2) Å for 3 respectively. Electrochemistry in non-aqueous solvents shows the electron-transfer sequence
The tricationic species is stable only in the short time of cyclic voltammetric tests.  相似文献   

18.
Two novel organic–inorganic hybrid polyoxometalates, (X = P, m = 1 1; X = Si, m = 2 2; 2,2′-bpy = 2,2′-bpyridine), have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. They are isostructural, possessing orthorhombic, and the parameters of unit cells for compound 1 are space group Pbca, a = 17.317(4) Å, b = 17.092(3) Å, c = 20.587(4) Å, V = 6445(2) Å3, Z = 4; for compound 2 are space group Pcab, a = 17.181(3) Å, b = 18.198(4) Å, c = 20.672(4) Å, V = 6463(2) Å3, Z = 4. The two compounds show a layer framework constructed from Keggin-polyoxoanion clusters and [Cu (2, 2′-bpy)2]2+ coordination polymer fragments via weak covalent interactions, resulting in a 3D network via supramolecular interactions. Their electrochemical properties are studied in detail.  相似文献   

19.
Two three-dimensional open-framework zinc phosphites, H2aem·Zn3(HPO3)4·0.5H2O (1) and H2apm·Zn3(HPO3)4 (2), have been synthesized by a phosphorous acid flux method, where aem=4-(2-aminoethyl)morpholine and apm=4-(3-aminopropyl)morpholine. Compound 1 crystallizes in the monoclinic system, P21/c, a=9.5852(7) Å, b=20.3941(8) Å, c=10.5339(8) Å, β=94.125(9)°, V=2053.8(2) Å3, Z=4, R1=0.0319, wR2=0.0628. Compound 2 crystallizes in the monoclinic system, P21/n, a=8.589(2) Å, b=14.020(3) Å, c=16.606(3) Å, β=97.190(8)°, V=1983.9(7) Å3, Z=4, R1=0.0692, wR2=0.1479. Both compounds are based on (3,4)-connected networks with 8- and 12-ring channels, which are constructed from Zn3(HPO3)4 clusters as the same secondary building units. These inorganic clusters are spatially organized by different structure-directing agents into different three-dimensional frameworks.  相似文献   

20.
Four trinuclear molybdenum(tungsten)-sulfur carbonyl cluster compounds, [Et4N]2[(OC)4Mo-S2MoS2Mo(CO)4] (1), [Et4N]2[(OC)4WS2WS2W(CO)4] (2), [Et4N]2[(OC)4MoS2WS2Mo(CO)4] (3), [Et4N]2[(OC)4WS2MoS2W(CO)4] (4) have been prepared by both reaction of [M(CO)4(S2CNEt2)] with M′S42− in MeOH and reaction of MeCN solution of M(CO)6 with M′S42− in MeOH (M=Mo, W; M′=Mo, W). These complexes has been characterized by routine elemental analysis and spectroscopy and the structures of 1 and 3 have been determined by X-ray crystallography. The structure study reveals that the anion of 3 contains a heteronuclear Mo–W–S trimetallic core, [MoS2WS2Mo]2−, consisting of two perpendicular rhombic MoS2W units sharing a tungsten atom. The Mo–W bond distances are 3.028(2) and 3.031(2) Å and the Mo–W–Mo angle is 176.04(5)°. The average bond lengths of W–S and Mo–S are 2.21 and 2.54 Å, respectively. The X-ray, structure, IR, CV (cyclic voltammetry) and 95 Mo NMR studies on these four cluster complexes indicated that these cluster complexes possess wide separated oxidation states of metal atoms and exhibit the charge transfer, ML→MHS4 (ML represents a low-valance metal atom and MH a high valence metal atom), between the two different valence metallic centers in the cluster complexes. It has been found that the charge transfer, ML→MHS4, in the complexes are: 1>4, 3>2, 1>3, 4>2, 1>2 and 34 implying the electron-donation ability of low-valence metal atoms in the complexes is Mo0>W0 and the electron-accepted ability of the high valence metal atoms in the complexes is MoVI>WVI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号