首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The gas phase molecular structure of methyl vinyl ether at room temperature has been studied by joint analysis of electron diffraction and microwave data. Constraints on geometrical and thermal parameters were derived from the geometry and force field of the s-cis form, obtained by ab-initio calculations (4–21 G basis set) after complete geometry relaxation. A range of models was investigated that fits all available data (infrared, microwave and electron diffraction). The following rg/r-parameters were obtained: C=C: 1.337 Å, C(sp2)---O: 1.359 Å, C(sp3)---O: 1.427 Å, : 1.102 Å C=C---O : 127.3° and COC: 116.8°. Experimental rg---re (ab initio) corrections are given for C=C, C(sp2)---O and Csp3)---O.

This investigation demonstrates that molecular orbital constrained electron diffraction is sufficiently reliable and in such a manner that it can be applied to more complicated problems.  相似文献   


2.
The molecular structure of 3-methylthiophene

has been determined by gas electron diffraction (GED) combined with microwave (MW) spectroscopic data. Ab initio calculations at the HF/3–21G* level were carried out and used as structural constraints in the data analysis. The torsional vibration of the methyl group was treated as a large-amplitude motion. The structural parameters were determined to be: rg(S---C2) = 1.719(2) Å, rg(C2=C3) = 1.370(3) Å, rg(C3---C6) = 1.497(6) Å, rg(C2---H) = 1.101(5) Å, CSC = 91.6(2)°, SC2C3 = 113.3(5)°, SC5C4 = 111.3(3)°, C2C3C6 = 123.2(11)° and C3C6H = 112(2)°. The values of r(S---C2) − r(S---C5) and r(C2=C3) − r(C4=C5) were fixed at the 3–21G* value of 0.002Å. Parenthesized values are the estimated limits of error (3σ) referring to the last significant digit.  相似文献   


3.
The conformational behaviour of divinyl ether in the gas phase was explored by infrared band profile simulations and joint analysis of electron diffraction and microwave data. At 300 K the rotameric mixture contains 80% [sp, ac] and 20% [ap, ap] forms. Geometries have been studied using constraints taken from ab initio 4-21G gradient geometry and force field calculations. Differences between some unresolved bond distances and angles were constrained to the calculated values. Scale factors for the ab initio force field were refined from the diffraction data. In addition the transferability of scale factors from methyl vinyl ether to divinyl ether was tested. The investigation demonstrates that molecular orbital constrained models are consistent with and rationalize all experimental gas phase results. Subject to the ab initio constraints, the analysis yields the following model (rg-distances, r-angles; numbers in parentheses are 6 times the least-squares ESDs): (C---H) = 1.103(12) A, (C---C) = 1.337(2) A, (C---O) = 1.389(2) A. Torsion angles for the [sp, ac] form are −13(6)° and 145(4)°.  相似文献   

4.
The electron diffraction study of tetramethoxymethane showed that in the gas phase the molecule has S4 symmetry, flattened along the S4 axis. Central and peripheral C-O bond lengths are different, consistent with considerations based on the anomeric effect. Comparison is made with ab initio calculations on methanediol. The geometrical parameters (rg(1) structure) are: central C-O bond 1.395 Å; peripheral C-O bond 1.422 Å; C-H bond 1.11 Å; O-C-O angle bisected by the S4. axis 114.7°; C-O-C angle 114.0°; O-C-H angle 111.9°; methoxy torsional angle 63.1°; methyl torsional angle 48.5°.  相似文献   

5.
The molecular structure of 3-methylthiophene has been determined by gas electron diffraction (GED) combined with microwave (MW) spectroscopic data. Ab initio calculations at the HF/3–21G* level were carried out and used as structural constraints in the data analysis. The torsional vibration of the methyl group was treated as a large-amplitude motion. The structural parameters were determined to be: rg(S---C2) = 1.719(2) Å, rg(C2=C3) = 1.370(3) Å, rg(C3---C6) = 1.497(6) Å, rg(C2---H) = 1.101(5) Å, CSC = 91.6(2)°, SC2C3 = 113.3(5)°, SC5C4 = 111.3(3)°, C2C3C6 = 123.2(11)° and C3C6H = 112(2)°. The values of r(S---C2) - r(S=C5) and r(C2=C3)-r(C4 =C5) were fixed at the 3–21G* value of 0.002 Å. Parenthesized values are the estimated limits of error (3σ) referring to the last significant digit.  相似文献   

6.
The molecular structure of trichloronitromethane has been studied in the gas phase using electron diffraction data. The molecules are found to undergo low barrier rotation about the CN bond with a planar CNO2 moiety in agreement with HF/MP2/B3LYP/6-311G(d,p) calculations. The experimental data are consistent with a dynamic model using a potential function for the torsion of V = (V6/2)(1 − cos 6τ). The major geometrical parameters (rg and ) for the eclipsed form, obtained from least squares analysis of the data are as follows: r(NO3) = r(NO4) = 1.213(2) Å, r(CN) = 1.592(6) Å, r(CCl)av = 1.749(1) Å, Cl5CN/Cl6CN = 109. 6°/106.3°(2), O3NC/O4NC = 117. 6°/114.1°(4), τCl5C1N2O3 = 0.0°, and V6 = 0.20(25) kcal/mol.  相似文献   

7.
The gas phase molecular structure of s-triazine has been determined from electron diffraction data. Experimental vibrational parameters proved consistent with those from the 4-21G force field after scaling onto infrared/Raman frequencies, as well as after direct scaling on electron diffraction data. The analysis resulted in the following rg/r°-parameters CN = 1.338(1) Å, CH = 1.106(8) Å, CNC = 113.9(1), NCN = 126.1, HCN = 116.9. The (new) rgre (4-21G) correction for aromatic CN is 0.006(1) Å.  相似文献   

8.
The molecular structure of 4,4′-sulfanidyl-bis-thiophenol (C12H10S3) has been determined by gas electron diffraction. Assuming identical geometry and D2h local symmetry for ---SC6H4S--- moieties, the following bond lengths (rg) and bond angles were obtained: C---H = 1.101 ± 0.005, S---H = 1.388 ± 0.019, (C---C)mean = 1.400 ± 0.003, (S---C)mean = 1.778 ± 0.004 Å, Car---S---Car = 103.5 ± 1.3, C---C(S)---C = 120.4 ± 0.3, C(H)---C(H)---H = 119.1 ± 0.9 and C---S---H = 94.6 ± 3.1°. Two ratational forms were found to reproduce the experimental data, characterized by dihedral angles of the benzene rings with respect to the CarSCar plane; 1 = 67.8 ± 2.0°, 2 = 4.5 ± 7.2°, and 1 = 69.4 ± 2.0δ, 2 = −26.6 ± 7.1°. Identical signs of 1 and 2 indicate that the two benzene rings are rotated in the same direction about the respective Scentral---C axes.  相似文献   

9.
Self-diffusion coefficients of oxygen in both polycrystalline and single crystal 2MgO·TiO2 have been measured at an ambient oxygen pressure of about 40 mm Hg over the temperature range 1080–1450°C. A convenient method to estimate the volume diffusion coefficient, D1, of this polycrystal in which the relative magnitude in Dg (grain boundary diffusion coefficient) with respect to D1 falls between two extremes, i.e., Dg = D1 and Dg D1, is newly proposed, and its plausibility is examined by comparing the resultant D1 with that of single crystal 2MgO·TiO2. Not only the magnitude but also the temperature dependence of the “apparent” diffusivity of these polycrystalline particles considerably varied with their particle size. The reason for this semiquantitatively interpreted in terms of the relative magnitude of Dg with respect to D1.  相似文献   

10.
A resonating valence bond electron transfer mechanism of combining two O2 molecules to form an O4 molecule is presented. The predicted molecular states of the reaction path D∞h→C2v→D2h are supported by the present ab initio molecular orbital calculations. The CASPT2 BSSE calculations yield a stable diamagnetic D2h O4 molecule with a very weak chemical bond between the monomers, in good agreement with experiments. A low activation barrier energy of 26 cal/mol for the O4 formation is found.  相似文献   

11.
Ab initio SCF calculations using the 4-31G basis set have been carried out to determine the equilibrium geometry, force constants and dipole moment derivatives of the linear (Cs and cylic (C2h) ammonia dimers. The results are compared with monomer calculations and experimental data.  相似文献   

12.
Gaseous 3-chloro-1-butene has been studied experimentally by electron diffraction (ED) at 20 and 180°C, and at these temperatures, 76(10)% and 62(10)%, respectively, of the most stable conformer i.e. the one having a hydrogen atom eclipsing the double bond, were found. The conformer with the chlorine atom eclipsing the C=C bond was also present. However, from the experimental data it was not possible to establish conclusive evidence for the conformer with an eclipsed CH3 group. Molecular mechanics (MM) calculations and ab initio calculations using a 4-21 basis set were carried out with complete geometry optimization, and calculated parameters from each of the methods were used in combination with the ED data. Such calculations indicated the existence of all three conformers mentioned above. Least-squares analysis including constraints from the ab initio calculation gave as a result the following molecular structure (ra distances and ??? angles) for the predominant conformer: r(C=C) = 1.337(6) Å, r(=C---C) = 1.503(4) Å, r(C---CH3) = 1.522 Å, R(C---Cl) = 1.813(4) Å, <r(C---H)> = 1.089(18) Å, ???C=C---C = 122.9(2.1)°, ???C---C---C = 112.6(2.2)°, ???=C---C---Cl = 109.9(0.2)°, ???Cl---C---CH3 = 109.3°. = 121.9° and = 110.0(1.3)°. The torsional angles were then τ(C=C---C---Cl> = −119.4° and τ(C=C---C---CH3) = 120.3(2.1)°. Error limits are 2σ (σ includes estimates of systematic errors and correlations), parameters without quoted uncertainties are dependent or were constrained relative to another parameter. Combining the ED data with MM results yielded parameters consistent with those given above.  相似文献   

13.
The radical copolymerization of (2,6-diphenyl) phenyl methacrylate (1) with methyl methacrylate in DMF with AIBN at 70°C has the reactivity ratios r1 = 0.071 and r2 = 1.42, from which Q1 = 1.45 and e1 = 1.20. The copolymers had Mns in the range of 10,000–40,000 and Tgs ranging from 406 to 480 K from which the hypothetical Tg for poly-1 was deduced as 500 K (227°C). Unlike 1, (2,6-diphenyl) phenyl acrylate could be polymerized to oligomers with Mn of the order of 2500.  相似文献   

14.
Variable temperature (−105 to −150 °C) studies of the infrared spectra (3500–400 cm−1) of 1,1-dimethylhydrazine, (CH3)2NNH2, in liquid krypton have been carried out. No convincing spectral evidence could be found for the trans conformer which is expected to be at least 600 cm−1 less stable than the gauche form. The structural parameters, dipole moments, conformational stability, vibrational frequencies, and infrared and Raman intensities have been predicted from MP2/6-31G(d) ab initio calculations. The predicted infrared and Raman spectra are compared to the experimental ones. The adjusted r0 parameters from MP2/6-311+G(d,p) calculations are compared to those reported from an electron diffraction study. The energy differences between the gauche and trans conformers have been obtained from MP2 ab initio calculations as well as from density functional theory by the B3LYP method calculations from a variety of basis sets. All of these calculations indicate an energy difference of 650–900 cm−1 with the B3LYP calculations predicted the larger values. The potential function governing the conformational interchange has been predicting from both types of calculations and comparisons have been made. The barrier to internal rotation by the independent rotor model of the inner methyl group is predicted to have a value of 1812 cm−1 and that of the outer one of 1662 cm−1 from ab initio MP2/6-31G(d) calculations. These values agree well with the experimentally determined values of 1852±16 and 1558±12 cm−1, respectively, from a fit of the torsional transitions with the coupled rotor model. For the coupled rotor model the predicted V33 (sin 3τ0 sin 3τ1 term) value which ranged from 190 to 232 cm−1 is in reasonable agreement with the experimental value of 268±3 cm−1 but the predicted V33 (cos 3τ0 cos 3τ1 term) value of −73 to −139 cm−1 is 25% smaller and of the opposite sign of the experimental value of 333±22 cm−1. These theoretical and spectroscopy results are compared to similar quantities of some corresponding molecules.  相似文献   

15.
Gaseous bis(hexamethydisilylamido)mercury(II), Hg{N(SiMe3)2)2}2, has been studied by electron diffraction at a nozzle temperature of ca 390 K.

The diffraction data are consistent with a model consisting only of monomers. By assuming the NHgN chain to be linear and the HgHSi2 fragments to be planar, an equilibrium conformer with a staggered Si2NHgNSi2 skeleton of Dad-symmetry may be brought into a nice agreement with the observed diffraction data. The relatively large value of the vibrational amplitude of the inter-ligand SiSi distance, 0.26(12) A, indicates that the ligands undergo large amplitude vibrations about the NHgN axis. Steric considerations as well as the magnitude of the rotational barrier as estimated from the diffraction data (ca. 2 kcal mol−1) show that this motion is hindered. A model with an eclipsed, co-planar Si2NHgNSi2 backbone of Dadsymmetry could not satisfactorily be brought into agreement with the observed diffraction data.

The values of some relevant key-parameters are: ra(Hg---N) = 2.01(2) A, ra(Si---N) = 1.732(9) A, ra(Si---C) = 1.883(6) A;HgNSi = 116.0(1.0)°, SiNSi = 128.0(2.0)°, NSiC= 111.8(1.2)° and SiCH = 111.0(2.0)°. The trimethylsilyl groups are twisted 25(3)° away from their references positions typified by one Si---C bond of each such group eclipsing the adjacent Hg---N bond, in such a way that the overall symmetry of the model is lowered from Dad to S4.  相似文献   


16.
Gas electron diffraction is applied to determine the geometric parameters of the silacyclobutane molecule using a dynamic model where the ring puckering was treated as a large amplitude motion. The structural parameters and the parameters of the potential function were refined taking into account the relaxation of the molecular geometry estimated from ab initio calculations at the MP2/6-311+G(d, p) level of theory. The potential function has been described as V() = V0[(/e)2 − 1]2 with the following parameters V0 = 0.82 ± 0.60 kcal/mol and e = 33.5 ± 2.7°, where is a puckering angle of the ring.

The geometric parameters at the minimum V() (ra in Å, in degrees and uncertainties given as three times the standard deviations including a scale error) are: r(Si–Hax) = 1.467(96), r(Si–Heq) = 1.468(96), r(Si–C) = 1.885(2), r(C–C) = 1.571(3), r(C–H) = 1.100(3), CSiC = 77.2(9), HSiH = 108.3, SiCHeq = 123.5(16), SiCHax = 111.9(16), CC5Heq = 118.4(24), CC5Hax = 112.3(24), HC3H = 107.7, δ(HSiH) = 6.6, δ(HC3H) = 7.0, where the tilts δ, HSiH, and HC3H are estimated from ab initio constraints. The structural parameters are compared with those obtained for related compounds.  相似文献   


17.
Ab initio molecular orbital theory was used to determine the equilibrium structure and vibrational frequencies of Fe2Cl6 and FeAlCl6. The equilibrium structure the Fe2Cl6 dimer has D2h symmetry with a planar arrangement of the four membered {FeClbrFeClbr} ring, similar to the Al2Cl6 dimer. The calculated bond distances and vibrational frequencies are in good agreement with experiment. The potential energy surface for the puckering of the {FeClbrFeClbr} ring is extremely flat. This prevents an unambiguous assignment of either D2h or C2v symmetry to the Fe2Cl6 structure in electron diffraction measurements. The FeAlCl6 molecule is found to have a C2v structure similar to Fe2Cl6 with vibrational frequencies in good agreement with experiment.  相似文献   

18.
Rotational barriers of methyl-sized molecular rotators are investigated theoretically using ab initio and empirical force field calculations in molecular models simulating various environmental conditions experienced by the molecular rotors. Calculations on neopentane surrounded by methyl groups suggest that the neopentane's methyl rotational potential energy barrier can be reduced by up to an order of magnitude by locating satellite functional groups around the rotator at a geometry that destabilizes the staggered conformation of the rotator through van der Waals repulsive interactions and reduces the staggered/eclipsed relative energy difference. Molecular mechanics and molecular dynamics calculations indicate that this barrier-reducing geometry can also be found in molecular rotators surface mounted on graphite surfaces or carbon nanotube models. In these models, molecular dynamics simulations show that the rotation of methyl-sized functional groups can be catalyzed by van der Waals interactions, thus making very rigid rotators become thermally activated at room temperature. These results are discussed in the context of design of nanostructures and use of methyl groups as markers for microenvironmental conditions.  相似文献   

19.
A sample of 2,3-diazido-1,3-butadiene has been synthesized from 1,4-dibromo-2-butyne and tetramethylguanidinium azide. The highly explosive sample has been studied by gaseous electron diffraction and by IR spectroscopy. Only incomplete Raman spectra have been recorded due to sample decomposition in the laser beam. The title compound is found to be planar with the CNN angle equal to 114.5°, oriented syn to the adjacent C=C double bond; the NNN angle is ca. 167°, oriented anti to the C---N bond. The following bond distances (ra) are obtained: N---N(N), 114.1; N---N(C), 124.2; C---N, 143.2; C=C 134.8; and C---C, 148.5 pm. The vibrational spectra are tentatively assigned in terms of C2h molecular symmetry, supported by force constant calculations.  相似文献   

20.
Propynyl isocyanide, CH3C2NC, has been prepared by vacuum pyrolysis of pentacarbonyl-(1,2-dichloropropenyl isocyanide) chromium, (CO)5Cr–CN–C(Cl)=C(Cl)CH3, and its ground state millimeter and microwave spectrum has been observed for the first time. rs structural parameters of this molecule with a C3v symmetry could be obtained from the rotational constants of several isotopomers: r(C1–C2)=1.456(2) Å, r(C2–C3)=1.206(2) Å, r(C3–N)= 1.316(2) Å, r(N–C4)= 1.175(2) Å, r(H–C1)= 1.090(1) Å, >HCC=110.7(4)°. The nitrogen quadrupole coupling constant has been determined to be 878(2) kHz and measurements of the Stark effect allowed to obtain an electric dipole moment of 4.19(3) Debye. The results fit well into a series of related compounds and are in good agreement with data from ab initio calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号