首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary p-Toluene sulfonate-doped polypyrrole (PPyTos) powder has been characterized by inverse gas chromatography at various temperatures. We have used apolar n-alkanes and polar probes of differing acidity and basicity to interrogate the London dispersive and Lewis acid-base properties of PPyTos, respectively. We have found that the London component of the surface energy (γsd) is about 90 mJ · m−2 at 25°C and the acid-base contribution to the free energy of adsorption (ΔGa AB) for Lewis bases is higher than 8 kJ · mol−1. These results show that PPyTos is a high energy material and is capable of very strong specific acid-base interactions. Lewis acidity is, however, dominant and is shown to increase with temperature. The determination of the heats of adsorption for tetrahydrofuran and ethyl acetate enabled us to determine Drago’s EA, CA, EB and CB parameters. Whilst EA and CA are similar to those published for chloride-doped polypyrrole and rank PPyTos as a hard acidic species, the EB and CB values suggest that PPyTos is a very soft Lewis base.  相似文献   

2.
The kinetic parameters of the exothermic decomposition of the title compound in a temperatureprogrammed mode have been studied by means of DSC. The DSC data obtained are fitted to the integral, differential, and exothermic rate equations by the linear least-squares, iterative, combined dichotomous, and least-squares methods, respectively. After establishing the most probable general expression of differential and integral mechanism functions by the logical choice method, the corresponding values of the apparent activation energy (E a), preexponential factor (A), and reaction order (n) are obtained by the exothermic rate equation. The results show that the empirical kinetic model function in differential form and the values of E a and A of this reaction are (1 − α)−4.08, 149.95 kJ mol−1, and 1014.06 s−1, respectively. With the help of the heating rate and kinetic parameters obtained, the kinetic equation of the exothermic decomposition of the title compound is proposed. The critical temperature of thermal explosion of the compound is 155.71°C. The above-mentioned kinetic parameters are quite useful for analyzing and evaluating the stability and thermal explosion rule of the title compound. The text was submitted by the authors in English.  相似文献   

3.
Accurate lower and upper bounds for the nonrelativistic lowest energies1 E 0 and3 E 0 of the singlet and triplet-system of the4He-Isotop are calculated with the linearized method of variance minimization. The same was done for1 E 1 the energy of the first excitedS-state 21 S. The results especially for1 E 0 and3 E 0 in a.u. are −2.903307699751 E 0 ≤ −2.90330769218 −2.174932426373 E 0 ≤ −2.17493242459 i.e. the values are determined with an absolute error smaller than 0.00167 cm−1 for1 E 0 and 0.00039 cm−1 for3 E 0.  相似文献   

4.
Differential scanning calorimetry was employed to investigate the reaction of diglycidyl ethers of bisphenol A (DGEBA) of mean molecular mass 348–480 Da, with collagen hydrolysate of chrome-tanned leather waste in a solvent-free environment. The reaction leads to biodegradable polymers that might facilitate recycling of plastic parts in products of the automotive and/or aeronautics industry provided with protective films on this basis. The reaction proceeds in a temperature interval of 205–220°C, at temperatures approx. 30–40°C below temperature of thermal degradation of collagen hydrolysate. The found value of reaction enthalpy, 519.19 J g−1 (= 101.24 kJ mol−1 of epoxide groups) corresponds with currently found enthalpy values of the reaction of oxirane ring with amino groups. Reaction heat depends on the composition of reaction mixture (or on mass fraction of diglycidyl ethers in the reaction mixture); proving the dependence of kinetic parameters of the reaction (Arrhenius pre-exponential factor A (min−1) and activation energy E a (kJ mol−1)) did not succeed. Obtained values of kinetic parameters are on a level corresponding to the assumption that reaction kinetics is determined by diffusion.  相似文献   

5.
Synthesis, characterization and thermal analysis of polyaniline (PANI)/ZrO2 composite and PANI was reported in our early work. In this present, the kinetic analysis of decomposition process for these two materials was performed under non-isothermal conditions. The activation energies were calculated through Friedman and Ozawa-Flynn-Wall methods, and the possible kinetic model functions have been estimated through the multiple linear regression method. The results show that the kinetic models for the decomposition process of PANI/ZrO2 composite and PANI are all D3, and the corresponding function is ƒ(α)=1.5(1−α)2/3[1−(1-α)1/3]−1. The correlated kinetic parameters are E a=112.7±9.2 kJ mol−1, lnA=13.9 and E a=81.8±5.6 kJ mol−1, lnA=8.8 for PANI/ZrO2 composite and PANI, respectively.  相似文献   

6.
Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional methods were used for this purpose. Depending on nanotube structure and impurity content, average activation energy (E a), pre-exponential factor (A), reaction order (n), and degradation mechanism changed considerably. For multi-walled CNTs, E a and A evaluated using model-fitting technique were ranged from 142.31 to 178.19 kJ mol−1, respectively, and from 1.71 × 105 to 5.81 × 107 s−1, respectively, whereas, E a for single-walled CNTs ranged from 83.84 to 148.68 kJ mol−1 and A from 2.55 × 102 to 1.18 × 107 s−1. Although, irrespective of CNT type, the model-fitting method resulted in a single kinetic triplet i.e., E a, A, and reaction mechanism, model-free isoconversional methods suggested that thermal oxidation of these nanotubes could be either a simple single-step mechanism with almost constant activation energy throughout the reaction span or a complex process involving multiple mechanisms that offered varying E a with extent of conversion. Criado method was employed to predict degradation mechanism(s) of these CNTs.  相似文献   

7.
This paper describes the use of an aluminum electrode plated by metallic palladium and modified by Prussian blue (PB/Pd-Al) in the electrocatalytic reduction of hydrogen peroxide (H2O2). The effect of pH on the electroreduction of H2O2 on the modified electrode is investigated and a simple irreversible reduction pathway is suggested. The electroreduction kinetics including transfer coefficient α, potential-dependent charge transfer rate constants k f, and diffusion coefficient D are estimated by means of forced hydrodynamic voltammetry using a rotating disk PB/Pd-Al electrode. The mean values obtained for kinetics are 0.38, 10−2 cm−1, and 7.6 × 10−6 cm2 s−1, respectively. The long-term stability of the modifying layers on the Al substrate was studied.  相似文献   

8.
A series of substituted triphenylphosphane complexes of the type CdL2X2 (L= triorthotolylphosphane or trimetatolylphosphane; X=Cl, Br or I) and HgL2X2 (L=triphenylphosphane or triorthotolylphosphane) was prepared fresh. The thermal decomposition was carried out in air with heating rate programmed at 10°C min−1 and it revealed that the complexes with ortho derivative were less stable and the triphenylphosphane moiety leaves along with halogen in the first step. All the complexes were stable up to 210°C. However, the stability order of the tetrahedral complexes was X=Cl>Br. Values of n, E, lnA and ΔS # have been approximated and compared. Complexes having Br have higher E a, lnA and ΔS # values than that having Cl.  相似文献   

9.
The kinetics of oxidation of l-Cysteine by pyridinium chlorochromate (PCC) was studied at 0.1–0.3 mol dm−3 HClO4 in the range 25–40 °C. The reaction exhibits first order dependence with respect to PCC and fractional order in cysteine. The increase in the oxidation rate with acidity suggests the involvement of a protonated chromium(VI) species in the rate-determining step. Cysteic acid is identified as the product of oxidation. A suitable mechanism involving the formation of a complex is proposed. The activation parameters of the rate-determining step are computed using the linear least squares method and the values of E a and ΔS # are found to be 46.0 ± 2.0 KJ mol−1 and −38.0 ± 3.2 JK−1 mol−1 respectively.  相似文献   

10.
The kinetics of oxidation of L-Cysteine in aqueous HClO4 medium were studied using a one-equivalent oxidant, hexachloroiridate(IV). The reaction exhibits second-order dependence with respect to hexachloroiridate(IV) and first-order in cysteine. The rate decreases with increase in hydrogen ion concentration indicating that the zwitterionic form of cysteine is more reactive. Cysteic acid is identified as the product of oxidation. A suitable mechanism involving the formation of [IrCl6]2− – sulphur bonded intermediate is proposed. The activation parameters of the reaction are computed using the linear least squares method and the values of Ea and ΔS# are found to be 27.97±1.82 kJ mol−1 and −51.30±6.0 J K−1mol−1, respectively.  相似文献   

11.
3,3-Dinitroazetidinium (DNAZ) salt of perchloric acid (DNAZ·HClO4) was prepared, it was characterized by the elemental analysis, IR, NMR, and a X-ray diffractometer. The thermal behavior and decomposition reaction kinetics of DNAZ·HClO4 were investigated under a non-isothermal condition by DSC and TG/DTG techniques. The results show that the thermal decomposition process of DNAZ·HClO4 has two mass loss stages. The kinetic model function in differential form, the value of apparent activation energy (E a) and pre-exponential factor (A) of the exothermic decomposition reaction of DNAZ·HClO4 are f(α) = (1 − α)−1/2, 156.47 kJ mol−1, and 1015.12 s−1, respectively. The critical temperature of thermal explosion is 188.5 °C. The values of ΔS , ΔH , and ΔG of this reaction are 42.26 J mol−1 K−1, 154.44 kJ mol−1, and 135.42 kJ mol−1, respectively. The specific heat capacity of DNAZ·HClO4 was determined with a continuous C p mode of microcalorimeter. Using the relationship between C p and T and the thermal decomposition parameters, the time of the thermal decomposition from initiation to thermal explosion (adiabatic time-to-explosion) was evaluated as 14.2 s.  相似文献   

12.
The temperature dependence of rate coefficient k is usually described by the Arrhenius expression ln k = ln A − (E/R)T −1. Chemical kinetics databases contain the recommended values of Arrhenius parameters A and E, the uncertainty parameter f (T) of the rate coefficient and temperature range of validity of this information. Taking ln k as a random variable with known normal distribution at two temperatures, the corresponding uncertainty of ln k at other temperatures was calculated. An algorithm is provided for the generation of the histogram of the transformed Arrhenius parameters ln A and E/R, which is in accordance with their 2D normal probability density function (pdf). The upper and the lower edges of the 1D normal distribution of ln k correspond to the two opposite edge regions of the 2D pdf of the transformed Arrhenius parameters. Changing the temperature, these edge regions move around the 2D cone. The rate parameters and uncertainty data belonging to reactions H + H2O2 = HO2 + H2 and O + HO2 = OH + O2 were used as examples.  相似文献   

13.
14.
The yields of post-source decay (PSD) and time-resolved photodissociation (PD) at 193 and 266 nm were measured for singly protonated leucine enkephalin ([YGGFL + H]+), a benchmark in the study of peptide ion dissociation, by using tandem time-of-flight mass spectrometry. The peptide ion was generated by matrix-assisted laser desorption ionization (MALDI) using 2,5-dihydroxybenzoic acid as the matrix. The critical energy (E0) and entropy (ΔS‡ at 1000 K) for the dissociation were determined by Rice-Ramsperger-Kassel-Marcus fit of the experimental data. MALDI was done for a mixture of YGGFL and Y6 and the plume temperature determined by the kinetic analysis of [Y6 + H]+ data were used to improve the precision of E0 and ΔS‡ for [YGGFL + H]+. E0 and ΔS‡ thus determined (E0 = 0.67 ± 0.08 eV, ΔS‡=−24.4 ± 3.2 eu with 1 eu = 4.184 J K−1mol−1) were significantly different from those determined by blackbody infrared radiative dissociation (BIRD) (E0 = 1.10 eV, ΔS‡ = −14.9 eu), and by surface-induced dissociation (SID) (E0 = 1.13 eV, ΔS‡ = −10.3 eu). Analysis of the present experimental data with the SID kinetics (and BIRD kinetics also) led to an unrealistic situation where not only PSD and PD but also MALDI-TOF signals could not be detected. As an explanation for the discrepancy, it was suggested that transition-state switching occurs from an energy bottleneck (SID/BIRD) to an entropy bottleneck (PSD/PD) as the internal energy increases.  相似文献   

15.
The effect of glucose (0–15 mass%) on the kinetics of bovine serum albumin (BSA) denatured aggregation at high concentration in aqueous solution has been studied by differential scanning calorimetry. The observed denatured aggregation process was irreversible and could be characterized by a denaturation temperature (T m), apparent activation energy (E a), the approximate order of reaction, and pre-exponential factor (A). As the glucose concentration increased from 0 to 15 mass%, T m increased, E a also increased from 514.59409±6.61489 to 548.48611±7.81302 kJ mol−1, and A/s−1 increased from 1.24239E79 to 5.59975E83. The stabilization increased with an increasing concentration of glucose, which was attributed to its ability to alter protein denatured aggregation kinetics. The kinetic analysis was carried out using a composite procedure involving the iso-conversional method and the master plots method. The iso-conversional method indicated that denatured aggregation of BSA in the presence and absence of glucose should conform to single reaction model. The master plots method suggested that the simple order reaction model best describe the process. This study shows the combination of iso-conversional method and the master plots method can be used to quantitatively model the denatured aggregation mechanism of the BSA in the presence and absence of glucose.  相似文献   

16.
In this research, the relationship between particle size and combustion kinetics and combustion properties of lignite samples was examined by utilizing the thermogravimetric (TG/DTG) and differential thermal analysis (DTA) techniques. The lignite samples separated into different size fractions were subjected to non-isothermal thermogravimetric analysis between ambient and 900°C in the presence of 50 mL min−1 air flow rate. Activation energy (E) and Arrhenius constant (A r) of combustion reaction of each size was evaluated by applying Arrhenius kinetic model to the resulting data. Combustion properties of the samples were interpreted by careful examination of the curves. The apparent activation energies in major combustion region were calculated as 41.03 and 53.11 kJ mol−1 for the largest size (−2360+2000 μm) and the finest size (−38 μm), respectively.  相似文献   

17.
Abstact  The reduction process of silica supported cobalt catalyst was studied by thermal analysis technique. The reduction of the catalyst proceeds in two steps:
which was validated by the TPR and in-situ XRD experiments. The kinetic parameters of the reduction process were obtained with a comparative method. For the first step, the activation energy, E a, and the pre-exponential factor, A, were found to be 104.35 kJ mol−1 and 1.18·106∼2.45·109 s−1 respectively. The kinetic model was random nucleation and growth and the most probable mechanism function was found to be f(α)=3/2(1−α)[−ln(1−α)]1/3 or in the integral form: g(α)=[−ln(1−α)]2/3. For the second step, the activation energy, E a, and the pre-exponential factor, A, were found to be 118.20 kJ mol−1 and 1.75·107∼2.45 · 109s−1 respectively. The kinetic model was a second order reaction and the probable mechanism function was f(α)=(1−α)2 or in the integral form: g(α)=[1−α]−1−1.  相似文献   

18.
The complex of [Nd(BA)3bipy]2 (BA = benzoic acid; bipy = 2,2′-bipyridine) has been synthesized and characterized by elemental analysis, IR spectra, single crystal X-ray diffraction, and TG/DTG techniques. The crystal is monoclinic with space group P2(1)/n. The two–eight coordinated Nd3+ ions are linked together by four bridged BA ligands and each Nd3+ ion is further bonded to one chelated bidentate BA ligand and one 2,2′-bipyridine molecule. The thermal decomposition process of the title complex was discussed by TG/DTG and IR techniques. The non-isothermal kinetics was investigated by using double equal-double step method. The kinetic equation for the first stage can be expressed as dα/dt = A exp(−E/RT)(1 − α). The thermodynamic parameters (ΔH , ΔG , and ΔS ) and kinetic parameters (activation energy E and pre-exponential factor A) were also calculated.  相似文献   

19.
The thermal decomposition of salbutamol (β2 — selective adrenoreceptor) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). It was observed that the commercial sample showed a different thermal profile than the standard sample caused by the presence of excipients. These compounds increase the thermal stability of the drug. Moreover, higher activation energy was calculated for the pharmaceutical sample, which was estimated by isothermal and non-isothermal methods for the first stage of the thermal decomposition process. For isothermal experiments the average values were E act=130 kJ mol−1 (for standard sample) and E act=252 kJ mol−1 (for pharmaceutical sample) in a dynamic nitrogen atmosphere (50 mL min−1). For non-isothermal method, activation energy was obtained from the plot of log heating rates vs. 1/T in dynamic air atmosphere (50 mL min−1). The calculated values were E act=134 kJ mol−1 (for standard sample) and E act=139 kJ mol−1 (for pharmaceutical sample).  相似文献   

20.
Thermal analysis techniques remain important tools amongst the large variety of methods used for analysis of the dehydroxylation of kaolinite. In the present study, the kinetics of dehydroxylation of Algerian kaolinite, wet ball milled for 5 h followed by attrition milling for 1 h, was investigated using differential thermal analysis (DTA) and thermogravimetry (TG). Experiments were carried out between room temperature and 1350 °C at heating rates of 5, 10 and 20 °C min−1. The temperature of dehydroxylation was found to be around 509 °C. The activation energy and frequency parameter evaluated through isothermal DTA treatment were 174.69 kJ mol−1 and 2.68 × 109 s−1, respectively. The activation energies evaluated through non-isothermal DTA and TG treatments were 177.32 and 177.75 kJ mol−1, respectively. Growth morphology parameters n and m were found to be almost equal to 1.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号