首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The UV-vis spectra of recently synthesized 1-amino-5-benzoyl-4-phenyl-1H-pyrimidine-2-one, (I), and 1-amino-5-benzoyl-4-phenyl-1H-pyrimidine-2-thione (II), were studied in aqueous methanol (5%, v/v, methanol) and pure methanol. The nature of the electronic transitions and the role of carbonyl oxygen of I and thiocarbonyl sulfur of II in the behavior of the observed UV-vis spectra were discussed. The carbonyl group at position 2 of I and the thiocarbonyl group of II were found to be enolized instead of protonation. Quantum chemical calculations showed agreement with the experimental evidence. However, the carbonyl group of the benzoyl moiety at position 5 of both compounds underwent neither enolization nor protonation. Acid-base equilibria of the compounds against varying pH have been examined in detail. The pKa values of all related equilibria were determined at room temperature and an ionic strength of 0.10 M from the pH-dependence of the absorbance values using the Henderson-Haselbalch equation and graphical logarithmic analysis. The mean acidity constants for the protonated forms of the compounds were determined as pKa1=4.214 and pKa2=6.678 for I and pKa1=3.739 and pKa2=6.258 for II. The mean acidity constants (pKa3) for the enol form of I and the thioenol form of II were determined as 11.278 and 11.063, respectively. The preferred dissociation mechanisms were discussed based on the data of UV-vis spectroscopy and a mechanism was proposed for each compound. The formation of intramolecular and intermolecular hydrogen bonding were found with I but not with II. The intramolecular bonding stabilizing the enol form was favoured at pH values corresponding to pKa1 and above. On the other hand, the intermolecular hydrogen bonding stabilizing the free form of the carbonyl group was favoured at all pH values.  相似文献   

2.
Ligands derived from the tripodal N4 ligand tris(pyridylmethyl)amine ((pyCH2)3N, tpa) of general formula (6-RNHpyCH2)nN(CH2py)(3-n)(R = H, n= 1-3 L(1-3); R = neopentyl, n= 1-3 L'(1-3)) were used to elucidate and quantify the magnitude of the effects exerted by hydrogen bonding and hydrophobic environments in the zinc-water acidity of their complexes. The pKa of the zinc-bound water molecule of [(L(1-3))Zn(OH2)]2+ and [(L'(1-3))Zn(OH2)]2+ 1'-3' was determined by potentiometric pH titrations in water (1-3) or water-ethanol (1:1) (1'-3'). The zinc(II) water acidity gradually increases as the number of -NH2 hydrogen bonding groups adjacent to the water molecule increases. Thus, the zinc-bound water of [(L3)Zn(OH2)]2+ and [(tpa)Zn(OH2)]2+ deprotonate with pKa values of 6.0 and 8.0, respectively. The pKa of the water molecule, however, is only raised from 8.0 in [(tpa)Zn(OH2)]2+ to 9.1 in [(bpg)Zn(OH2)]+ (bpa =(pyCH2)2N(CH2COO-)). Moreover, the acidity of the zinc-bound water of several of the five-coordinate zinc(II) complexes with the hydrogen bonding groups is greater than that of four-coordinate [((12)aneN3)Zn(OH2)]2+ (pKa = 7.0). This result shows that the magnitude of the effect exerted by the hydrogen bonding groups can be larger than that induced by changing one neutral by one anionic ligand, and/or even by changing the coordination number of the zinc(II) centre. The X-ray structure of [(L'2)Zn(OH)]ClO4 2' and [(L'3)Zn(OH)]ClO4.CH3CN 3'.CH3CN is reported, and show the neopentylamino groups forming N-H...O hydrogen bonds with the zinc-bound hydroxide. Although, which have hydrogen bonding and hydrophobic groups, have a zinc-bound water more acidic than [(tpa)Zn(OH2)]2+, their pKa is not always lower than that of 1-3. This result suggests that a hydrogen bonding microenvironment may be more effective than a hydrophobic one to increase the zinc-water acidity.  相似文献   

3.
The influence of the metal ion and chiral diamine used to form a metal(salen) complex on the catalytic activity of the complex in the asymmetric benzylation of an alanine enolate was investigated. Only metal ions which could form square-planar complexes gave catalytically active complexes, and best results were obtained with metal ions from the first row of transition metals, particularly copper(II) and cobalt(II). Salen ligands derived from acyclic, chiral 1,2-diamines were found to generate poor catalysts, an effect which seems to correlate with the ability of the substituents within the diamine to adopt a conformation in which they are anti to one another. Complexes derived from a variety of 5- and 6-membered cyclic 1,2-diamines did form active catalysts, but the enantioselectivity was always far lower than that of the parent cyclohexane-1,2-diamine derived complex.  相似文献   

4.
The dinucleotide d(pGpG) is an often employed DNA model to study various kinds of interactions between DNA and metal ions, but its acid-base properties were not yet described in detail. In this study the six deprotonation reactions of H4[d(pGpG)]+ are quantified. The acidity constants for the release of the first proton from the terminal P(O)(OH)2 group (pKa = 0.65) and for one of the (N7)H+ sites (pKa = 2.4) are estimated. The acidity constants of the remaining four deprotonation reactions were measured by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO3): The pKa values for the deprotonations of the second (N7)H+, the P(O)2(OH)-, and the two (N1)H sites are 2.98, 6.56, 9.54 and 10.11, respectively. Based on these results we show how to estimate acidity constants for related systems that have not been studied, e.g. pGpG, which is involved in the initiation step of a rotavirus RNA polymerase. The relevance of our results for nucleic acids in general is briefly indicated.  相似文献   

5.
镉的高灵敏显色体系研究及表面活性剂作用机理   总被引:7,自引:0,他引:7  
王磊  沈乃葵 《化学学报》1993,51(11):1106-1111
本文以2-氯-4-硝基苯重氮氨基偶氮苯(CNDAA)为显色剂, 研究了镉的高灵敏显色体系及表面活性剂的作用机理。研究结果表明: 对于Cd(II)-CNDAA配合物, 非离子型、阴离子型及阴-非混合型表面活性剂对此有显著的增溶增敏作用, 并以Cd(II)-CNDAA-SF显色体系建立了光度法测定微量镉的高灵敏新方法, 并对几种测定方法进行了比较, 筛选出显色条件宽容、选择性好的体系。该体系用于铝合金样品中镉的测定, 结果满意。另外, 还提出了Cd(II)-CNDAA配合物的结构, 对表面活生剂对体系的作用作了描述, 并阐明了试剂的酸性离解常数(pK~a)与显色酸度以及方法的选择性三者之间的关系。  相似文献   

6.
The importance assigned to chelating agents in diverse areas has impelled studies concerning their development as related to metal ions representing a biological concern. The synthesis of di-isopropyliminodiacetoamide (D) is presented in this work. The acidity constant obtained for D was pKa = 5.79 +/- 0.04 with the aid of program SUPERQUAD. The equilibrium constants for D with Cu(II) were obtained with the aid of program SQUAD for CuD2+ and CuD2(2)+ species giving log beta1 = 4.795 +/- 0.002 and log beta2 = 8.374 +/- 0.004, respectively.  相似文献   

7.
Rates of the reversible deprotonation of benzo[b]-2,3-dihydrofuran-2-one (6H-O) and benzo[b]-2,3-dihydrothiophene-2-one (6H-S) by OH-, primary aliphatic amines, secondary alicyclic amines, and carboxylate ions have been determined in water at 25 degrees C. As noted earlier by Kresge and Meng, 6H-S (pKa = 8.82) is considerably more acidic than 6H-O (pKa = 11.68), which mainly reflects the greater aromatic stabilization of the conjugate base of 6H-S (thiophene derivative) compared to that of 6H-O (furan derivative). The main focus of this paper is to assess how the difference in the aromaticity of the two enolate ions affects the intrinsic barrier to the proton transfer. These intrinsic barriers were determined from Br?nsted plots for the reactions with the amines and carboxylate ions or calculated on the basis of the Marcus equation for the reactions with OH-. They are consistently somewhat higher for the reactions of 6H-S than for the reactions of 6H-O, implying that the aromaticity in the anion enhances the intrinsic barrier. This contrasts with a previous report on the deprotonation of some cyclic rhenium Fischer-type carbene complexes where the reaction that leads to the most aromatic conjugate base (thiophene derivative) has a lower intrinsic barrier than the reaction that leads to the less aromatic furan analogue. We are offering a detailed analysis of other potential factors that may affect the intrinsic barriers and which could explain these contradictory results.  相似文献   

8.
Il palm leaf powder (OPLP), an agricultural solid waste was used as adsorbent for the removal of copper (II) ions after modification with an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS), CH3(CH2)11C6H4SO3Na. The copper (II) ions adsorption is highly dependent on pH and maximum removal was observed at pH 6, above which copper (II) started to precipitate. The equilibrium adsorption data were fitted into the Langmuir and Freundlich isotherms. The Freundlich isotherm model fitted well to data with 0.989 regression coefficient (R2). The kinetics of the adsorption of copper (II) ions onto the surfactant-modified OPLP was best described by a pseudo-second-order model. Comparison of this SDBS-modified-OPLP to previously investigated adsorbents showed comparably good result, offering this material as a promising adsorbent for the treatment of waste waters containing lower concentrations of copper (II) ions.  相似文献   

9.
[Structure: see text]. The pKa values for calixarenes in MeCN have been determined by selective titration with bases using a spectroscopic method. These values are as follows: calix[4]arene pKa(1) = 19.06 +/- 0.22, pKa(2) > 33; calix[6]arene pKa(1) = 15.59 +/- 0.06, pKa(2) = 23.85 +/- 0.35, pKa(3) > 33; calix[8]arene pKa(1) = 17.20 +/- 0.20, pKa(2) = 20.32 +/- 0.31, pKa(3) > 33. The trends in acidity are rationalized using structures generated by a DFT model. For mono-deprotonation, the degree and nature of hydrogen bonding in the anion is the dominant factor; for di-deprotonation, spatial separation of the anionic charges becomes important.  相似文献   

10.
A hydrazone ligand (HL) containing the thiophene moiety has been prepared via condensation of thiophene-2-carbohydrazide with 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carbaldehyde. The complexes of copper(II), nickel(II), cobalt(II), manganese(II), zinc(II), palladium(II), iron(III), ruthenium(III), uranyl(VI), and titanium(IV) with the ligand were prepared in good yield from the reaction of the ligand with the corresponding metal salts. The ligand and complexes were characterized using infrared, mass spectra, nuclear magnetic resonance, electronic absorption spectra, electron spin resonance, and magnetic moment measurements as well as elemental and thermal analyses. The results showed that the complexes are enolic by nature, whilst the ratio between the metal ion and the ligand depends on the acidity of the metallic ions and their oxidation numbers.  相似文献   

11.
The transfer and separation of Cu(II), Co(II), Ni(II) and Zn(II) ions across a hollow fiber supported liquid membrane containing LIX 864 as the mobile carrier dissolved in kerosene solvent has been investigated. The flux and selectivity for copper has been studied as a function of the feed flow, the carrier concentration in the liquid membrane and the extraction solution acidity. A maximum copper recovery at 30% of LIX (v/v) in the diluent was obtained. The permeation experiments showed that at pH 2 in the extraction solution a highly selective separation of Cu over the other cations can be achieved. Increasing the acidity of the extraction solution copper selectivity decrease and the grade of recuperation sequence is Cu>Co>Ni>Zn. These results suggest that in selected situations, this membrane system can be competitive with the conventional liquid-liquid extraction process, in particular in leaching solutions with low metal concentration.  相似文献   

12.
Iron(II)-phenylpyruvate complexes of tetradentate tris(6-methyl-2-pyridylmethyl)amine (6-Me3-TPA) and tridentate benzyl bis(2-quinolinylmethyl)amine (Bn-BQA) were prepared to gain insight into C-C bond cleavage catalyzed by dioxygenase enzymes. The complexes we have prepared and characterized are [Fe(6-Me3-tpa)(prv)][BPh4] (1), [Fe2(6-Me3-tpa)2(pp)][(BPh4)2] (2), and [Fe2(6-Me3-tpa)2(2'-NO2-pp)][(BPh4)2] (3), [Fe(6-Me3-tpa)(pp-Me)][BPh4] (4), [Fe(6-Me3-tpa)(CN-pp-Et)][BPh4] (5), and [Fe(Bn-bqa)(pp)] (8), in which PRV is pyruvate, PP is the enolate form of phenylpyruvate, 2'-NO2-PP is the enolate form of 2'-nitrophenylpyruvate, PP-Me is the enolate form of methyl phenylpyruvate, and CN-PP-Et is the enolate form of ethyl-3-cyanophenylpyruvate. The structures of mononuclear complexes 1 and 5 were determined by single-crystal X-ray diffraction. Both the PRV ligand in 1 and the CN-PP-Et ligand in 5 bind to the iron(II) center in a bidentate manner and form 5-membered chelate rings, but the alpha-keto moiety is in the enolate form in 5 with concomitant loss of a C-H(beta) proton. The PP ligands of 2, 3, 4, and 8 react with dioxygen to form benzaldehyde and oxalate products, which indicates that the C2-C3 PP bond is cleaved, in contrast to cleavage of the C1-C2 bond previously observed for complexes that do not contain alpha-ketocarboxylate ligands in the enolate form. These reactions serve as models for metal-containing dioxygenase enzymes that catalyze the cleavage of aliphatic C-C bonds.  相似文献   

13.
The present study was carried out in a batch system using a lichen (Pseudevernia furfuracea (L.) Zopf) for the sorption of nickel(II) and copper(II) ions from water. Particularly, the effect of pH, contact time and temperature were considered. Pseudevernia furfuracea exhibited nickel(II) and copper(II) uptake of 49.87 and 60.83 mg/g at an initial pH of 4 and 5-6 at 35 degrees C respectively. Both the Freundlich and Langmuir adsorption models were suitable for describing the biosorption of nickel(II) and copper(II) by the biosorbent. Biosorption showed pseudo first order rate kinetics for nickel and copper ions. Using the equilibrium constant values obtained at 25 and 35 degrees C, the thermodynamics properties of the biosorption (deltaG degrees, deltaH degrees and deltaS degrees) were determined. The biosorption of nickel(II) and copper(II) onto Pseudevernia furfuracea was found to be endothermic.  相似文献   

14.
Sekido E  Fujiwara I  Masuda Y 《Talanta》1972,19(4):479-487
The effect of acidity on the precipitation of various bivalent metal 8-selenoquinoline and 8-mercaptoquinoline complexes has been systematically studied and compared. The metal ions were Zn(2+), Cd(2+), Pb(2+), Mn2+, Ni(2+), Cu(2+) and Co(2+). Most of the metal ions, except copper(II) and cobalt(II), precipitate as a. 1:2 complex, metal :ligand. However, in hydrochloric acid solution cadmium precipitates as CdR(2).2HCl and lead as PbR(2).2HCl or PbR.Cl. Copper(II) is reduced to copper(I) and precipitates as CuR.RH at pH above 2.0 and as CuR in strongly acidic solution. Cobalt(II) does not give a precipitate of composition but appears to precipitate as a mixture of CoR(2).RH and fixed CoR(2) or as other complexes. The reasons for the formation of the various types of precipitate are considered.  相似文献   

15.
Density functional theory (DFT) calculations have been performed using the uB3LYP/6-31++G(d,p) model to calculate the solution phase one-electron reduction potentials (E(calc)) and absolute pKa values of a series of copper bis(thiosemicarbazonato) complexes. The effects of solvation in water and dimethylsulfoxide (DMSO) are incorporated as a self-consistent reaction field (SCRF) using the integral equation formalism polarisable continuum model (IEFPCM) and are found to be essential for quantitative agreement with an average error in E(calc) of -0.02 V compared to experiment. The bonding and spin densities are examined through the use of Natural Bond Order analysis and the results used to rationalise the calculated and observed reduction potentials. Calculated estimates of pKa values of several copper(II) species are presented and their implications for the mechanisms of transport and trapping within hypoxic cells are considered. Reduction is found to be a prerequisite for protonation of the complexes which suggests their transport in the blood stream as neutral species, and the mechanistic sequence is identified as a sequential electrochemical-chemical (EC) process. The complex equilibria of protonation, reoxidation and dissociation are discussed and the copper(I) diprotonated, cationic complex of diacetyl bis(4-methyl-3-thiosemicarbazonato)copper(II), Cu(I)ATSMH2(+), is identified as a possible candidate for the initial species trapped in hypoxic cells.  相似文献   

16.
Molecular sieves 4A (MS4A) work effectively as base leading to catalytic generation of nickel(II) enolate or nitronate nucleophiles through deprotonation of the α-hydrogen atom of nucleophile precursors on treatment with a catalytic amount of chiral nickel(II) ions. The resulting reactive intermediates can be successfully trapped with α,β-unsaturated carbonyl electrophiles to produce the corresponding Michael adducts in good yields with high enantioselectivities.  相似文献   

17.
The addition of pyridine-2-carbaldehyde 4N-methylthiosemicarbazone (C8H10N4S) to an aqueous solution of copper(II) nitrate yields [[Cu(C8H9N4S)(NO3)]2] (1). This complex consists of centrosymmetric dinuclear entities containing square-pyramidal copper(II) ions bridged through the sulfur thioamide atoms. The oxidation of 1 with KBrO3 or KIO3 gives rise to a compound with formula [[Cu(C8H8N4O)(H2O)2(SO4)]2]*2H2O (2) (C8H8N4O = 2-methylamino-5-pyridin-2-yl-1,3,4-oxadiazole). The structure of 2 is made up of centrosymmetric dimers where the copper(II) ions exhibit a distorted octahedral coordination and are connected by the oxadiazole moiety. The metal ions in 2 can be removed by addition of K4[Fe(CN)6], and then the oxadiazole ligand can be isolated and recrystallized as (C8H8N4O)*3H2O (3).  相似文献   

18.
N2-oxopropenyldeoxyguanosine (2) forms in duplex DNA by modification of dG residues with base propenal or malondialdehyde. The pKa of 2 was estimated to be 6.9 from the pH dependence of its ring-closing to the pyrimidopurinone derivative 1. The acidity of 2 may be an important determinant of its miscoding properties and its reactivity to nucleophiles in DNA or protein. To test this hypothesis, analogous N-oxopropenyl derivatives of dA (4), dC (5), and N1-methyl-dG (6) were synthesized and their pKa's were determined by optical titration. The N-oxopropenyl derivatives of dA and dC both exhibited pKa's of 10.5, whereas the N-oxopropenyl derivative of N1-methyldG exhibited a pKa of 8.2. Cross-linking of 2, 4, 5, and 6 to N(alpha)-acetyl-lysine was explored at neutral pH. Adduct 2 did not react with N(alpha)-acetyl-lysine, whereas 4-6 readily formed cross-links. The structures of the cross-links were elucidated, and their stabilities were investigated. The results define the acidity of oxopropenyl deoxynucleosides and highlight its importance to their reactivity toward nucleophiles. This study also identifies the structures of a potential novel class of DNA-protein cross-links.  相似文献   

19.
The binding of copper(II) ions to membrane-bound synthetic receptors has been investigated. Complexation fitted a 4:1 receptor:copper(II) model, and the observed binding constants are significantly enhanced at the membrane relative to solution; these effects can be explained by the lower polarity of the membrane-water interface and the concentrating effect of the membrane, with no observed contribution from receptor preorganization. The stoichiometry of the complex formed is very sensitive to the concentration of the receptor in the membrane, and at low concentrations, binding is reduced relative to solution controls. This implies that by increasing or decreasing the number of receptors in their membranes, cells can finely tune biological responses such as chemotaxis that depend on the size of the receptor-ligand clusters formed.  相似文献   

20.
A series of structurally characterized copper complexes of two pyridazine-spaced cryptands in redox states + (I,I), (II,I), (II), (II,II) are reported. The hexaimine cryptand L(I) [formed by the 2 + 3 condensation of 3,6-diformylpyridazine with tris(2-aminoethyl)amine (tren)] is able to accommodate two non-stereochemically demanding copper(I) ions, resulting in [Cu(I)(2)L(I)](BF(4))(2) 1, or one stereochemically demanding copper(II) ion, resulting in [Cu(II)L(I)()](BF(4))(2) 3. Complex 3 crystallizes in two forms, 3a and 3b, with differing copper(II) ion coordination geometries. Addition of copper(I) to the monometallic complex 3 results in the mixed-valence complex [Cu(I)Cu(II)L(I)](X)(3) (X = PF(6)(-), 2a; X = BF(4)(-), 2b) which is well stabilized within this cryptand as indicated by electrochemical studies (K(com) = 2.1 x 10(11)). The structurally characterized, octaamine cryptand L(A), prepared by sodium borohydride reduction of L(I), is more flexible than L(I) and can accommodate two stereochemically demanding copper(II) ions, generating the dicopper(II) cryptate [Cu(II)(2)L(A)](BF(4))(4) 4. Electrochemical studies indicate that L(A) stabilizes the copper(II) oxidation state more effectively than L(I); no copper redox state lower than II,II has been isolated in the solid state using this ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号