首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
The Elementary Goldstone Higgs(EGH) model is a perturbative extension of the standard model(SM),which identifies the EGH boson as the observed Higgs boson. In this paper, we study pair production of the EGH boson via gluon fusion at the LHC and find that the resonant contribution of the heavy scalar is very small and the SM-like triangle diagram contribution is strongly suppressed. The total production cross section mainly comes from the box diagram contribution and its value can be significantly enhanced with respect to the SM prediction.  相似文献   

2.
We present a new global fit to precision electroweak data, including new low- and high-energy data and analyzing the radiative corrections arising from the minimal symmetry breaking sectors of the Standard Model (SM) and its supersymmetric extension (MSSM). It is shown that present data favor a Higgs mass of ${cal O}(M_Z)$: $$M_{H}=76 {+ 152 ?op -50}{? GeV}.$$ We confront our analysis with (meta) stability and perturbative bounds on the SM Higgs mass, and the theoretical upper bound on the MSSM Higgs mass. Present data do not discriminate significantly between the SM and MSSM Higgs mass ranges. We comment in passing on the sensitivity of the Higgs mass determination to the values of $←pha (M_Z)$ and ${←pha_s} (M_Z)$.  相似文献   

3.
In the framework of the two-loop renormalization group, the restrictions on the Higgs mass from the electroweak vacuum stability and from the absence of the strong coupling are refined, while the more precise value of the top mass is taken into account. When the SM cutoff is equal to the Planck scale, the Higgs mass must be GeV and GeV, where the corridor is the theoretical one and the errors are due to the top-mass uncertainty. The SM two-loop functions are generalized to the case with massive neutrinos from extra families. The requirement of self-consistency of the perturbative SM as an underlying theory up to the Planck scale excludes a fourth chiral family. Under the precision-experiment restriction GeV, the fourth chiral family, if alone, is excluded even when the SM is regarded as an effective theory. Nevertheless a pair of chiral families constituting a vector-like one could exist. Received: 2 September 1998 / Revised version: 4 January 1999 / Published online: 28 September 1999  相似文献   

4.
Arbitrary regularization dependent parameters in Quantum Field Theory are usually fixed on symmetry or phenomenology grounds. We verify that the quadratically divergent behavior responsible for the lack of naturalness in the Standard Model (SM) is intrinsically arbitrary and regularization dependent. While quadratic divergences are welcome for instance in effective models of low energy QCD, they pose a problem in the SM treated as an effective theory in the Higgs sector. Being the very existence of quadratic divergences a matter of debate, a plausible scenario is to search for a symmetry requirement that could fix the arbitrary coefficient of the leading quadratic behavior to the Higgs boson mass to zero. We show that this is possible employing consistency of scale symmetry breaking by quantum corrections. Besides eliminating a fine-tuning problem and restoring validity of perturbation theory, this requirement allows to construct bounds for the Higgs boson mass in terms of $\delta m^{2}/m^{2}_{H}$ (where m H is the renormalized Higgs mass and δm 2 is the 1-loop Higgs mass correction). Whereas $\delta m^{2}/m^{2}_{H}<1$ (perturbative regime) in this scenario allows the Higgs boson mass around the current accepted value, the inclusion of the quadratic divergence demands $\delta m^{2}/m^{2}_{H}$ arbitrarily large to reach that experimental value.  相似文献   

5.
We present a new global fit to precision electroweak data, including new low- and high-energy data and analyzing the radiative corrections arising from the minimal symmetry breaking sectors of the Standard Model (SM) and its supersymmetric extension (MSSM). It is shown that present data favor a Higgs mass ofO(M z):M H=76 ?50 +152 GeV. We confront our analysis with (meta) stability and perturbative bounds on the SM Higgs mass, and the theoretical upper bound on the MSSM Higgs mass. Present data do not discriminate significantly between the SM and MSSM Higgs mass ranges. We comment in passing on the sensitivity of the Higgs mass determination to the values ofα(M z) andα s(M z).  相似文献   

6.
In a recently proposed scenario for primordial inflation, where the Standard Model (SM) Higgs boson plays a role of the inflation field, an effective field theory (EFT) approach is the most convenient for working out the consequences of breaking of perturbative unitarity, caused by the strong coupling of the Higgs field to the Ricci scalar. The domain of validity of the EFT approach is given by the ultraviolet (UV) cutoff, which, roughly speaking, should always exceed the Hubble parameter in the course of inflation. On the other hand, applying the trusted principles of quantum gravity to a local EFT demands that it should only be used to describe states in a region larger than their corresponding Schwarschild radius, manifesting thus a sort of UV/IR correspondence. We consider both constraints on EFT, to ascertain which models of the SM Higgs inflation are able to simultaneously comply with them. We also show that if the gravitational coupling evolves with the scale factor, the holographic constraint can be alleviated significantly with minimal set of canonical assumptions, by forcing the said coupling to be asymptotically free.  相似文献   

7.
The Standard Model (SM) Higgs boson was predicted by theorists in the 1960s during the development of the electroweak theory. Prior to the startup of the CERN Large Hadron Collider (LHC), experimental searches found no evidence of the Higgs boson. In July 2012, the ATLAS and CMS experiments at the LHC reported the discovery of a new boson in their searches for the SM Higgs boson. Subsequent experimental studies have revealed the spin-0 nature of this new boson and found its couplings to SM particles consistent to those of a Higgs boson. These measurements confirmed the newly discovered boson is indeed a Higgs boson. More measurements will be performed to compare the properties of the Higgs boson with the SM predictions.  相似文献   

8.
The radion is a scalar particle that occurs in brane world models and interacts with the trace of the energy–momentum tensor of the Standard Model (SM). The radion–SM fermion interaction Lagrangian differs from the Higgs boson–fermion interaction Lagrangian for off-shell fermions. It is shown that all additional, as compared to the Higgs boson, contributions to the amplitudes of radion production and decay processes involving off-shell fermions are canceled out for both massless and massive fermions. Thus, additional terms in the interaction Lagrangian do not change properties of these processes for the radion and the Higgs boson, except for the general normalization factors. This similarity is a consequence of gauge invariance for the processes with production of gauge bosons. When an additional scalar particle is produced, there are no apparent reasons for the above cancellation, as confirmed, for example, by the process with production of two scalar particles, which features an additional contribution of the radion in comparison with the Higgs boson.  相似文献   

9.
We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tan β and m A . We observe that at fixed CM energy, in the SM, the total cross-section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM. The changes that occur for the MSSM in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross-section. The observed deviations in cross-section for different choices of Higgs boson masses suggest that the measurements of the cross-section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.   相似文献   

10.
The low energy perturbative consistency of various models of electroweak interactions is discussed in the limit of large Higgs boson massesM H . In each case an upper bound onM H is found.  相似文献   

11.
We present the calculation of the light neutral CP-even Higgs mass in the MSSM for a heavy SUSY spectrum by resumming enhanced terms through fourth logarithmic order (N\(^{3}\)LL), keeping terms of leading order in the top Yukawa coupling \(\alpha _t\), and NNLO in the strong coupling \(\alpha _s\). To this goal, the three-loop matching coefficient for the quartic Higgs coupling of the SM to the MSSM is derived to order \(\alpha _t^2\alpha _s^2\) by comparing the perturbative EFT to the fixed-order expression for the Higgs mass. The new matching coefficient is made available through an updated version of the program Himalaya. Numerical effects of the higher-order resummation are studied using specific examples, and sources of theoretical uncertainty on this result are discussed.  相似文献   

12.
This article reviews recent measurements of the properties of the standard model (SM) Higgs boson using data recorded with the CMS detector at the LHC: its mass, width and couplings to other SM particles. We also summarise highlights from searches for new physical phenomena in the Higgs sector as they are proposed in many extensions of the SM: flavour violating and invisible decay modes, resonances decaying into Higgs bosons and searches for additional Higgs bosons.  相似文献   

13.
We investigated the neutral Higgs boson pair production at the CERN Large Hadron Collider (LHC) in the SM with four families. We found that the gluon-gluon fusion mode is the most dominant one in producing neutral Higgs boson pair at the LHC, and it can be used to probe the trilinear Higgs coupling. If the heavy quarks of the fourth generation really exist within the SM, they can manifest their effect on the cross section of the Higgs pair production process at the LHC. Our numerical results show that there will be 2×104 neutral Higgs boson pair production events per year if the next generation heavy quarks really exist, while there will be only 2×103 events produced per year if there are only three families in the SM.  相似文献   

14.
We study the dark matter (DM) discovery prospect and its spin discrimination in the theoretical framework of gauge invariant and renormalizable Higgs portal DM models at the ILC with \(\sqrt{s} = 500\) GeV. In such models, the DM pair is produced in association with a Z boson. In the case of the singlet scalar DM, the mediator is just the SM Higgs boson, whereas for the fermion or vector DM there is an additional singlet scalar mediator that mixes with the SM Higgs boson, which produces significant observable differences. After careful investigation of the signal and backgrounds both at parton level and at detector level, we find the signal with hadronically decaying Z boson provides a better search sensitivity than the signal with leptonically decaying Z boson. Taking the fermion DM model as a benchmark scenario, when the DM-mediator coupling \(g_\chi \) is relatively small, the DM signals are discoverable only for benchmark points with relatively light scalar mediator \(H_2\). The spin discriminating from scalar DM is always promising, while it is difficult to discriminate from vector DM. As for \(g_\chi \) approaching the perturbative limit, benchmark points with the mediator \(H_2\) in the full mass region of interest are discoverable. The spin discriminating aspects from both the scalar and the fermion DM are quite promising.  相似文献   

15.
We critically discuss the possibility that the 125 GeV boson recently discovered at the LHC is the holographic techni-dilaton, a composite state emerging from a strongly-coupled model of electroweak symmetry breaking. This composite state differs from the SM for three main reasons. Its decay constant is in general larger than the electroweak scale, hence suppressing all the couplings to standard-model particles with respect to an elementary Higgs boson, with the exception of the coupling to photons and gluons, which is expected to be larger than the standard-model equivalent.  相似文献   

16.
《Comptes Rendus Physique》2015,16(4):394-406
With the discovery of the Higgs boson by the LHC in 2012, a new era started in which we have direct experimental information on the physics behind the breaking of the electroweak (EW) symmetry. This breaking plays a fundamental role in our understanding of particle physics and sits at the high-energy frontier beyond which we expect new physics that supersedes the Standard Model (SM). In this review we summarize what we have learned so far from LHC data in this respect. In the absence of new particles having been discovered, we discuss how the scrutiny of the properties of the Higgs boson (in search for deviations from SM expectations) is crucial as it can point the way for physics beyond the SM. We also emphasize how the value of the Higgs mass could have far-reaching implications for the stability of the EW vacuum if there is no new physics up to extremely large energies.  相似文献   

17.
We study Higgs boson production and decay in a certain class of little Higgs models with T-parity in which some T-parity partners of the Standard Model (SM) fermions gain their masses through Yukawa-type couplings. We find that the Higgs boson production cross section of a 120 GeV Higgs boson at the CERN LHC via gg fusion process at one-loop level could be reduced by about 45%, 35% and 20%, as compared to its SM prediction, for a relatively low new particle mass scale f=600, 700 and 1000 GeV, respectively. On the other hand, the weak boson fusion cross section is close to the SM value. Furthermore, the Higgs boson decay branching ratio into di-photon mode can be enhanced by about 35% in small Higgs mass region in certain case, for the total decay width of Higgs boson in the little Higgs model is always smaller than that in the SM.  相似文献   

18.
For a long time, global fits of the electroweak sector of the standard model (SM) have been used to exploit measurements of electroweak precision observables at lepton colliders (LEP, SLC), together with measurements at hadron colliders (Tevatron, LHC) and accurate theoretical predictions at multi-loop level, to constrain free parameters of the SM, such as the Higgs and top masses. Today, all fundamental SM parameters entering these fits are experimentally determined, including information on the Higgs couplings, and the global fits are used as powerful tools to assess the validity of the theory and to constrain scenarios for new physics. Future measurements at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) promise to improve the experimental precision of key observables used in the fits. This paper presents updated electroweak fit results using the latest NNLO theoretical predictions and prospects for the LHC and ILC. The impact of experimental and theoretical uncertainties is analysed in detail. We compare constraints from the electroweak fit on the Higgs couplings with direct LHC measurements, and we examine present and future prospects of these constraints using a model with modified couplings of the Higgs boson to fermions and bosons.  相似文献   

19.
Measuring vector boson scattering(VBS) precisely is an important step toward understanding the electro weak symmetry breaking of and detecting new physics beyond the standard model(SM).Herein,we propose a neural network that compresses the features of the VBS data into a three-dimensional latent space.The consistency of the SM predictions and experimental data is tested via binned log-likelihood analysis in the latent space.We show that the network is capable of distinguishing different polarization modes of WWjj production in both di-and semileptonic channels.The method is also applied to constrain the effective field theory and two Higgs Doublet Model.The results demonstrate that the method is sensitive to general new physics contributing to the VBS.  相似文献   

20.
It is likely that the LHC will observe a color- and charge-neutral scalar whose decays are consistent with those of the standard model (SM) Higgs boson. The Higgs interpretation of such a discovery is not the only possibility. For example, electroweak symmetry breaking could be triggered by a spontaneously broken, nearly conformal sector. The spectrum of states at the electroweak scale would then contain a narrow scalar resonance, the pseudo-Goldstone boson of conformal symmetry breaking, with Higgs-boson-like properties. If the conformal sector is strongly coupled, this pseudodilaton may be the only new state accessible at high energy colliders. We discuss the prospects for distinguishing this mode from a minimal Higgs boson at the LHC and ILC. The main discriminants between the two scenarios are (i) cubic self-interactions and (ii) a potential enhancement of couplings to massless SM gauge bosons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号