首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
This investigation is an attempt to improve our understanding of the thermal properties of PMMA (Polymethyl methacrylate) by using PS(Polystyrene); the miscibility of PMMA/PS polymer blend is studied. Our work aims to study the impact of the percentage of PMMA/PS polymer blend on the simulated values of the glass transition temperature (Tg) using the dilatometric method. Compass was chosen as the force field (second category force field). The results reveal a single value of the glass transition temperature Tg that is found for all the curves of the PMMA/PS blend system (molar ratio: (50:50, 60:40, 54:46 and 80:20)); this could be a good criterion for predicting the miscibility. Additionally, the solubility parameters of PMMA and PS are calculated and used to obtain the Flory–Huggins parameter, and the morphology of our polymer blend is simulated using the dissipative particle dynamics method (DPD). Our results exhibit an increase in the Tg of PMMA whenever PS is added; hence, we can confirm the miscibility of the PMMA/PS polymer system.  相似文献   

2.
In this study, in-situ compatibilized polymer blends of polypropylene (PP) and poly (butyl methacrylate-co-hydroxyethyl methacrylate) P(BMA-co-HEMA) were prepared in a corotating twin screw extruder through the reactive extrusion of mixtures of PP, P(BMA-co-HEMA), butyl methacrylate, and benzoyl peroxide. In the process of reactive extrusion, butyl methacrylate and benzoyl peroxide were used as the monomer and the initiator, respectively. Thereafter the polymer blend was made into fibers via melt spinning. The miscibility of PP and P(BMA-co-HEMA) in the blend fibers was investigated using field emission scanning electron microscopy. The absorption percentage of the blend fibers for organic liquids and their remaining ratios after the absorption tests were also determined and used to prove the generation of the third phase. The changes in the fiber morphology during organic liquid absorption were observed using polarized light microscopy. In addition, the effect of the miscibility on the crystal structure and melting characteristic of the blend fibers were analyzed using wide-angle X-ray diffractometry and differential scanning calorimetry. Finally, the thermal stability of the blend fibers that was associated with the miscibility of PP and P(BMA-co-HEMA) in the blend fibers were characterized by using thermogravimetry and dynamic thermomechanical analysis.  相似文献   

3.
The effect of solvent and temperature on the miscibility of polystyrene (PS) and poly (styrene-co-acrylonitrile) (PSAN) was examined by the dilute-solution viscometry (DSV) method. The extent of miscibility of different PS/PSAN blend compositions (30/70, 50/50, and 70/30) in chloroform (CHCl3) and N, N- dimethyl formamide (DMF) was discussed in terms of the signs of various viscosity (ΔB, μ, Δ[η], α, and β) parameters. Based on the sign convention of these interaction parameters, partial miscibility in DMF and almost immiscibility in CHCl3 was indicated for the examined blend. The data obtained from the DSV method were then correlated with the ones obtained through density and refractive index measurements; good agreement was obtained. The study also revealed a relatively greater influence of temperature and composition on the miscibility of the blend in DMF than in CHCl3.  相似文献   

4.
Measurements of viscosity, ultrasonic velocity, refractive index, and density of chitosan (CS)/polyethylene glycol (PEG) blends in buffer solution (0.1 M acetic acid+0.2 M sodium acetate) were carried out for different blend compositions at 30, 40, and 50°C. Using the viscosity data, interaction parameters μ and α were computed to determine miscibility. These values revealed that the blend was miscible when the chitosan content was more than 60% of the blend. The results were further confirmed by ultrasonic velocity, density, and refractive index measurements. Further, the results revealed that the change in temperature has no significant effect on the miscibility of CS/PEG polymer blends.  相似文献   

5.
Polymer blends of chitosan (CHI) with poly(vinyl pyrrolidone) (PVP) have been prepared by solution blending, and their miscibility studies were carried out by using physical techniques over an extended range of concentration and composition in buffer solution. The viscosity, ultrasonic velocity, density, and refractive index were measured at 30, 40, and 50°C, respectively. Using viscosity data, the interaction parameter μ and α were computed to probe the miscibility. These values revealed that the blend is miscible when the chitosan content is more than 60% in the blend at all temperatures. The obtained results were further confirmed by the ultrasonic velocity, density, and refractive index measurements.  相似文献   

6.
In this work the synthesis and characterization of the nanostructure of polymer blends of polycarbonate (PC) and poly(ethylene terephthalate) (PET) obtained from their inclusion complexes with γ-cyclodextrin are reported. The blends prepared by this method present differences in their miscibility compared with those blends obtained by conventional methods like solution casting, coprecipitation, or melt blending. In order to understand the influence of molecular weight in the inclusion complex process, PCs of Mw = 64,000 and 28,000 g/mol were used. The analysis of the nanostructured blend by Fourier transform infrared (FTIR), 1H-nuclear magnetic resonance (1H-NMR), wide-angle X-ray diffraction (WAXD), differential scanning colorimetry (DSC), and thermogravimetric analysis (TGA) suggests the existence of specific intermolecular interactions between PC and PET that promote miscibility in this normally immiscible polymer blend. Studies by FTIR confirm that the miscibility found was not due to a transesterification reaction during DSC analysis. There were also differences in the morphology of the blends, observed by optical microscopy, obtaining a more homogeneous phase for blends formed in inclusion complexes. The results obtained strongly suggest an improvement in miscibility of the PC/PET blends.  相似文献   

7.
The synthesized hydrophilic polymers [poly (vinyl butyral) (PVB) and cationic PVB (CPVB)] blended with poly (vinylidene fluoride) (PVDF) were used to fabricate hydrophilic ultrafiltration membranes. A visual inspection method and a glass transition temperature method were applied to study the miscibility of PVDF/PVB and PVDF/CPVB blend systems. The results showed that the PVDF/PVB was an immiscible blend and the PVDF/CPVB was a partially miscible blend. Dynamic contact angle experiments showed that the hydrophilicity of the blend membranes was significantly improved with the addition of PVB and CPVB. The pure water permeation (PWP) of blend membranes increased with the content of PVB and CPVB.  相似文献   

8.
In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.  相似文献   

9.
NMR relaxation-derived spectral densities provide information on molecular and internal motions occurring on the picosecond to nanosecond time scales. Using (13)C and (15)N NMR relaxation parameters [T(1), T(2), and NOE] acquired at four Larmor frequencies (for (13)C: 62.5, 125, 150, and 200 MHz), spectral densities J(0), J(omega(C)), J(omega(H)), J(omega(H) + omega(C)), J(omega(H) - omega(C)), J(omega(N)), J(omega(H) + omega(N)), and J(omega(H) - omega(N)) were derived as a function of frequency for (15)NH, (13)C(alpha)H, and (13)C(beta)H(3) groups of an alanine residue in an alpha-helix-forming peptide. This extensive relaxation data set has allowed derivation of highly defined (13)C and (15)N spectral density maps. Using Monte Carlo minimization, these maps were fit to a spectral density function of three Lorentzian terms having six motional parameters: tau(0), tau(1), tau(2), c(0), c(1), and c(2), where tau(0), tau(1) and tau(2) are correlation times for overall tumbling and for slower and faster internal motions, and c(0), c(1), and c(2) are their weighting coefficients. Analysis of the high-frequency portion of these maps was particularly informative, especially when deriving motional parameters of the side-chain methyl group for which the order parameter is very small and overall tumbling motions do not dominate the spectral density function. Overall correlation times, tau(0), are found to be in nanosecond range, consistent with values determined using the Lipari-Szabo model-free approach. Internal motional correlation times range from picoseconds for methyl group rotation to nanoseconds for backbone N-H, C(alpha)-H, and C(alpha)-C(beta) bond motions. General application of this approach will allow greater insight into the internal motions in peptides and proteins.  相似文献   

10.
We present a factorization formula for valence quark distributions in a hadron in x→1 limit. For the example of pion, we arrive at the form of factorization by analyzing momentum flow in the leading and high-order Feynman diagrams. The result confirms the well-known 1−x scaling rule to all orders in perturbation theory, providing the nonperturbative matrix elements for the infrared divergence factors. We comment on resummation of perturbative single and double logarithms in 1−x.  相似文献   

11.
Faraday surface instability measurements of the critical acceleration, a(c), and wave number, k(c), for standing surface waves on a tetracosanol (C24H50) melt exhibit abrupt changes at T(s)=54 degrees C, approximately 4 degrees C above the bulk freezing temperature. The measured variations of a(c) and k(c) vs temperature and driving frequency are accounted for quantitatively by a hydrodynamic model, revealing a change from a free-slip surface flow, generic for a free liquid surface (T>T(s)), to a surface-pinned, no-slip flow, characteristic of a flow near a wetted solid wall (T相似文献   

12.
Density functional studies of 26 K superconducting LaFeAs(O,F) are reported. We find a low carrier density, high density of states, N(E(F)), and modest phonon frequencies relative to T(c). The high N(E(F)) leads to proximity to itinerant magnetism, with competing ferromagnetic and antiferromagnetic fluctuations and the balance between these controlled by the doping level. Thus LaFeAs(O,F) is in a unique class of high T(c) superconductors: high N(E(F)) ionic metals near magnetism.  相似文献   

13.
Miscibility in blends of polystyrene and poly(phenylene oxide) (PS/PPO) confined in thin films (down to 6 nm) was investigated using a recently developed sensitive differential alternating current (AC) chip calorimeter. Comparison of composition dependence of glass transition in thin films with common models should provide information on miscibility. This study focuses on the blend system polystyrene and poly(phenylene oxide) (PS/PPO) because it is thought as a miscible model system in the whole composition range. Furthermore, its local dynamic heterogeneity is already identified by dynamic mechanic thermal analysis (DMTA) and solid state NMR techniques. For this blend, we find that even for the thinnest films (6 nm, corresponding to about half of PPO’s radius of gyration R g) only one glass transition is observed. The composition dependence of T g is well described by the Fox, Couchman or Gordon-Taylor mixing law that are used for the miscible bulk blends. Although there is a contradicting result on whether T g decreases with decreasing film thickness between our calorimetric measurements and Kim’s elipsometric measurements on the same blend (Kim et al. Macromolecules 2002, 35, 311–313), the conclusion that the good miscibility between PS and PPO remains in ultrathin films holds for both studies. Finally, we show that our chip calorimeter is also sensitive enough to study the inter-layer diffusion in ultrathin films. PS chain in a thin PS/PPO double layer that is prepared by spin coating PPO and PS thin film in tandem will gradually diffuse into the PPO layer when heated above T g of PS, forming a PSxPPO100−x blend. However, above the PSxPPO100−x blend, there exists an intractable pure PS like layer (∼30  nm in our case) that does not diffuse into the blend beneath even staying at its liquid state over 10 hours.  相似文献   

14.
We discovered stripe patterns of trimerization-ferroelectric domains in hexagonal REMnO(3) (RE=Ho,···,Lu) crystals (grown below ferroelectric transition temperatures (T(c)), reaching up to 1435 °C), in contrast with the vortex patterns in YMnO(3). These stripe patterns roughen with the appearance of numerous loop domains through thermal annealing just below T(c), but the stripe domain patterns turn to vortex-antivortex domain patterns through a freezing process when crystals cross T(c) even though the phase transition appears to not be Kosterlitz-Thouless-type. The experimental systematics are compared with the results of our six-state clock model simulation and also the Kibble-Zurek mechanism for trapped topological defects.  相似文献   

15.
Liquid-vapor coexistence curves and critical parameters for hard-core 1:1 electrolyte models with diameter ratios lambda = sigma(-)/sigma(+) = 1 to 5.7 have been studied by fine-discretization Monte Carlo methods. Normalizing via the length scale sigma(+/-) = 1 / 2(sigma(+)+sigma(-)), relevant for the low densities in question, both T(*)(c) ( = k(B)T(c)sigma(+/-)/q(2)) and rho(*)(c) ( = rho(c)sigma(3)(+/-)) decrease rapidly (from approximately 0.05 to 0.03 and 0.08 to 0.04, respectively) as lambda increases. These trends, which unequivocally contradict current theories, are closely mirrored by results for tightly tethered dipolar dimers (with T(*)(c) lower by approximately 0%-11% and rho(*)(c) greater by 37%-12%).  相似文献   

16.
Time-resolved small angle neutron scattering was used to probe the initial stages of liquid-liquid phase separation in both critical and off-critical binary polymer blends, and the critical (q(c)) and most probable (q(m)) wave vectors were identified for several quench depths. For the critical blend, the Cahn-Hilliard-Cook theory provides a framework for analyzing the data and explains the observed decrease in q(m) with time. For the off-critical blend, q(m) is independent of quench time, regardless of whether the quench is metastable or unstable.  相似文献   

17.
We perform a systematic study of incoherent transport in the high temperature crossover region of the half filled one-band Hubbard model. We demonstrate that the family of resistivity curves displays characteristic quantum critical scaling of the form ρ(T, δU) = ρ(c)(T)f(T/T?(δU)), with T?(δU) ~ |δU|(zν), and ρ(c)(T) ~ T. The corresponding β function displays a "strong coupling" form β ~ ln(ρ(c)/ρ), reflecting the peculiar mirror symmetry of the scaling curves. This behavior, which is surprisingly similar to some experimental findings, indicates that Mott quantum criticality may be acting as the fundamental mechanism behind the unusual transport phenomena in many systems near the metal-insulator transition.  相似文献   

18.
《Composite Interfaces》2013,20(6):439-453
Fourier—transform infrared (FT-IR) with digital subtraction method has been applied to investigate the molecular interactions of immiscible polystyrene (PS)/bisphenol A polycarbonate (PC) blends and miscible PS/tetra-methyl PC (TMPC) blends. The FT-IR results show that there are no interactions for PS/PC, and the miscibility of PS/TMPC blends is mainly due to the intermolecular interaction between the phenyl ring of PS and the carbonate group of TMPC. The phenyl ring band of PS is linearly shifted to higher wave number with increasing concentration of TMPC, and the bandwidth at half maximum intensity of the carbonyl band of TMPC is linearly decreased with increasing concentration of PS. The amplitude of the interactional bands is decreased with increasing temperature consistent with LCST behavior of the blend. The miscibility of PS/TMPC and immiscibility of PS/PC has also been discussed in terms of local free-volume, self-interactions, and intermolecular interactions based on the chemical structures of PC and TMPC. Furthermore, the immiscibility behavior for blends of methyl-substituted PS and TMPC, and blends of PS and halogen-substituted PC has been explained in terms of intra and intermolecular interactions caused by steric and/or induction effects.  相似文献   

19.
From our recent theory based on the generation of shear flow and field in finite beta plasmas, the criterion for bifurcation from low to high confinement mode yields a critical parameter proportional to T(e)/square root (L(n)), where T(e) is the electron temperature and L(n) is the density scale length. The predicted threshold shows very good agreement with edge measurements on discharges undergoing low-to-high transitions in DIII-D. The observed differences in the transitions with the reversal of the toroidal magnetic field are reconciled in terms of this critical parameter. The theory also provides an explanation for pellet injection H modes in DIII-D, thereby unifying unconnected methods for accomplishing the transition.  相似文献   

20.
The miscibility and phase behavior of ternary systems formed by a DGEBA based epoxy resin, polystyrene (PS), and diblock copolymers has been investigated through phase diagrams experimentally obtained by using a light transmission device. The analysis has been done in the absence and in the presence of a curing agent. In both cases, the influence of the copolymer content and chemical nature (PS-b-PMMA or PS-b-PHEMA) has been discussed. The results show that miscibility is enhanced as the copolymer content in the ternary blend is increased, due to specific H-bonding interactions between the H-donor hydroxyl groups on the epoxy resin and the H-acceptor carbonyl groups in the copolymer, the effect being more pronounced with PMMA than with PHEMA. Experimental results have been fitted with the Flory-Huggins theoretical model by using interaction parameters depending both on temperature and composition. The morphological evolution of the epoxy networks has been examined by scanning electron microscopy (SEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号