首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The role that grain boundary (GB) structure plays on the directional asymmetry of an intergranular crack (i.e. cleavage behaviour is favoured along one direction, while ductile behaviour along the other direction of the interface) was investigated using atomistic simulations for aluminium 〈1 1 0〉 symmetric tilt GBs. Middle-tension (M(T)) and Mode-I crack propagation specimens were used to evaluate the predictive capability of the Rice criterion. The stress–strain response of the GBs for the M(T) specimens highlighted the importance of the GB structure. The observed crack tip behaviour for certain GBs (Σ9 (2 2 1), Σ11 (3 3 2) and Σ33 (4 4 1)) with the M(T) specimen displayed an absence of directional asymmetry which is in disagreement with the Rice criterion. Moreover, in these GBs with the M(T) specimen, the dislocation emission from a GB source at a finite distance ahead of the crack tip was observed rather than from the crack tip, as suggested by the Rice criterion. In an attempt to understand discrepancy between the theoretical predictions and atomistic observations, the effect of boundary conditions (M(T), Mode-I and the edge crack) on the crack tip events was examined and it was concluded that the incipient plastic events observed were strongly influenced by the boundary conditions (i.e. activation of dislocation sources along the GB, in contrast to dislocation nucleation directly from the crack tip). In summary, these findings provide new insights into crack growth behaviour along GB interfaces and provide a physical basis for examining the role of the GB character on incipient event ahead of a crack tip and interface properties, as an input to higher scale models.  相似文献   

2.
The atomic structure of several symmetrical tilt grain boundaries (GBs) in Cu and their interaction with vacancies and interstitials as well as self-diffusion are studied by molecular statics, molecular dynamics, kinetic Monte Carlo (KMC), and other atomistic simulation methods. Point defect formation energy in the GBs is on average lower than in the lattice but variations from site to site within the GB core are very significant. The formation energies of vacancies and interstitials are close to one another, which makes the defects equally important for GB diffusion. Vacancies show interesting effects such as delocalization and instability at certain GB sites. They move in GBs by simple vacancy-atom exchanges or by long jumps involving several atoms. Interstitial atoms can occupy relatively open positions between atoms, form split dumbbell configurations, or form highly delocalized displacement zones. They diffuse by direct jumps or by the indirect mechanism involving a collective displacement of several atoms. Diffusion coefficients in the GBs have been calculated by KMC simulations using defect jump rates determined within the transition state theory. GB diffusion can be dominated by vacancies or interstitials, depending on the GB structure. The diffusion anisotropy also depends on the GB structure, with diffusion along the tilt axis being either faster or slower than diffusion normal to the tilt axis. In agreement with Borisov's correlation, the activation energy of GB diffusion tends to decrease with the GB energy.  相似文献   

3.
NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, J(ij), and total anisotropic couplings, T(ij), between all the (1)H, (19)F, and (13)C nuclei, except for those between two (13)C nuclei. The values obtained for T(ij) in principle contain a contribution from J(ij)(aniso), the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, D(ij), to be extracted from the T(ij), and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from J(CF)(aniso) or J(FF)(aniso) in the two compounds studied.  相似文献   

4.
The preferential penetration of a liquid metal along grain boundaries (GBs) in polycrystalline metals is a well-known phenomenon. Gallium-decorated GB networks in rolled aluminium alloys have been visualized three-dimensionally using the high-resolution synchrotron radiation computer tomography (SRCT). The distribution of gallium concentration along GBs was measured using X-ray absorption. Statistical correction for blurring was performed to raise accuracy of the measurement, and then compared with orientation mapping by the SEM/EBSP method on the surface of a tomographic specimen. The pancake-like grain microstructure formed by a rolling process causes the anisotropy of penetration direction. Although the gallium penetrated into high-angle GBs, all of the high-angle GBs are not necessarily decorated by the gallium. The reason for this may be explained by considering geometrically possible penetration paths that seem to be dependent on local grain arrangement and GB structure through each path. The dependence of the gallium concentration on the rotation axis of misorientation has been found along the high-angle GBs. Especially, GBs with a specific misorientation (〈221〉 as a misorientation axis) showed high gallium concentration.  相似文献   

5.
Abstract

The grain boundaries (GBs) present in polycrystalline materials are important with respect to materials behaviour and properties. During the transient stage of oxidation, the higher GB diffusivity results in heterogeneous oxidation structures in the form of oxide ridges that emerge along the alloy GBs. In an attempt to delve into the more fundamental aspects of the GBs, such as GB energy, the size of the oxide ridges was quantitatively measured by atomic force microscopy on the post oxidation surface of a Fe-22 wt % Cr alloy after an oxidation exposure at 800 °C in dry air. The GB diffusivity was calculated utilising the ridge size data and the relationship between the GB diffusivity and the GB characteristics was determined. Furthermore, the GB energy was calculated from the GB diffusivity data, also to make comparison with the data available in the literature. The absolute value of the calculated GB energy was quite close to the values reported in the literature. However, compared to the extremely low temperature (0 K) data-set from the literature, the data-set obtained from this study showed much less spread. The smaller variation range may be attributed to the higher temperature condition (1073 K) in this study.  相似文献   

6.
A modified analytic embedded atom method (MAEAM) potential is constructed for fcc updelta-Pu. Molecular dynamics (MD) simulations with the potential are performed to investigate the interactions between two symmetrical tilt grain boundaries (GBs) and point defects such as He atom, vacancy and self-interstitial atom (SIA) in Pu. The calculated results show that point defect formation energies are on average lower than those in the lattice but variations from site to site along the GBs are very remarkable. Both substitutional and interstitial He atoms are trapped at GBs. Interstitial He atom is more strongly bound at the GB core than the substitutional He atom. The binding energy of SIA at GB core is higher than those of He atom and vacancy. GB core can bind many He atoms and SIAs due mainly to the fact that it contains many vacancies. Compared with He atom and SIA, the vacancy far from GB core is difficult to diffuse into the core. The GBs can act as sinks and sources of He atoms and SIAs, which may be a reason for the swelling of Pu after a period of self-irradiation because of the higher concentration of vacancy in the bulk.  相似文献   

7.
Mass transport and solid-state reactions in nanocrystalline thin films are reviewed. It is illustrated that diffusion along different grain boundaries (GBs) can have important effects on the overall intermixing process between two pure films. These processes can be well characterized by a bimodal GB network, with different (fast and slow) diffusivities. First the atoms migrate along fast GBs and accumulate at the film surface. These accumulated atoms form a secondary diffusion source for back diffusion along slow boundaries. Thus the different GBs of the thin films can be gradually filled up with the diffusing atoms and composition depth profiles reflect the result of these processes. Similar processes can be observed in binary systems with intermetallic layers: instead of nucleation and growth of the reaction layer at the initial interface, the reaction takes place in the GBs and the amount of the product phase grows by the motion of its interfaces perpendicular to the GBs. Thus, the entire layer of the pure parent films can be consumed by this GB diffusion-induced solid-state reaction (GBDIREAC), and a fully homogeneous product layer can be obtained.  相似文献   

8.
The nucleation behavior of He bubbles in single-crystal (sc) and nano-grain body-centered-cubic (bcc) Mo is simulated using molecular dynamics (MD) simulations, focusing on the effects of the grain boundary (GB) structure. In sc Mo, the nucleation behavior of He bubbles depends on irradiation conditions. He bubbles nucleate by either clustering of He atoms with pre-existing vacancies or self-interstitial-atom (SIA) punching without initial vacancies. In nano-grain Mo, strong precipitation of He at the GBs is observed, and the density, size and spatial distribution of He bubbles vary with the GB structure. The corresponding He bubble density is higher in nano-grain Mo than that in sc Mo and the average bubble size is smaller. In the GB plane, He bubbles distribute along the dislocation cores for GBs consisting of GB dislocations and randomly for those without distinguishable dislocation structures. The simulation results in nano-grain Mo are in agreement with previous experiments in metal nano-layers, and they are further explained by the effect of excess volume associated with the GBs.  相似文献   

9.
From analysis of numerous experimental data on grain boundary (GB) statistics in polycrystals it has been established that certain groups of materials with cubic structure reveal similar GB character distributions (GBCD) (distribution of GBs by reciprocal density of coincidence sites ). It has been shown that GBCD can be described with an empirical low with different parameters for various groups. Several criteria for classification of materials by these groups (the stacking fault energy value, hierarchy of GB energies and mechanism of replacement of high-energy GBs with low-energy ones) have been considered. It has been found that peculiarities of electronic structure of materials are correlated with the classification proposed.  相似文献   

10.
The relaxation of the extrinsic grain boundary dislocation (EGBD) stresses, created by interaction of lattice dislocations with grain boundaries (GBs), is a phenomenon which plays an important role in recrystallization and high temperature deformation of materials. The kinetics of this phenomenon, controlled by GB diffusion, are relatively well established. On the contrary, the processes which operate in order the GBs return to equilibrium are still controversed in vicinal and general GBs.The decomposition in discrete products and the rapid motion of the glissile components observed by High Resolution Electron Microscopy (HREM) in symmetrical tilt GBs support the recent incorporation model of EGBD accommodation. But, until now, these observations and this model are restricted to GBs described by the Structural Unit/Grain Boundary Dislocation (SU/GBD) model. Otherwise, the Spreading phenomenon generally observed by Transmission Electron Microscopy (TEM) in vicinal and general GBs is not clearly understood.This paper is an attempt to review the different EGBD accommodation models and to raise up the question of their relevance to account for the stress relaxation in any grain boundary.  相似文献   

11.
The classic grain-boundary (GB) model concludes that GBs in polycrystalline semiconductors create deep levels that are extremely harmful to optoelectronic applications. However, our first-principles density-functional theory calculations reveal that, surprisingly, GBs in CuInSe2 (CIS) do not follow the classic GB model: GBs in CIS do not create deep levels due to the large atomic relaxation in GB regions. Thus, unlike the classic GB model, GBs in CIS are electrically benign, which explains the long-standing puzzling fact that polycrystalline CIS solar cells with remarkable efficiency can be achieved without deliberate GB passivation. This benign electrical character of GBs in CIS is confirmed by our scanning Kelvin probe microscopy measurements on Cu(In,Ga)Se2 chalcopyrite films.  相似文献   

12.
King [1] established that due to the discrete nature of their dislocation structure, finite length grain boundaries (GBs) in polycrystalline materials possess discrete values of misorientation angle. For a GB with a length that is not a multiple of the GB period, this leads to the formation of specific disclinations at their junctions with neighboring GBs, which compensate the difference between the misorientations of finite and infinite boundaries. In the present paper the origin of these compensating disclinations within GB triple junctions is elucidated and their strength is calculated using the disclination-structural unit model. It is shown that for a GB with length of about 10 nm the junction disclinations can have a strength value not more than 1°, in contrast to King's calculations that indicate much larger values. Elastic energies of triple junctions due to compensating disclinations are calculated for both equilibrium and non-equilibrium structures of a finite length GB, which differ by the position of the grain boundary dislocation network with respect to the junctions. The calculations show that triple junction energies are comparable to dislocation energies, and that compensating disclinations can play a significant role in the properties of nanocrystalline metals with grain sizes less than about 10 nm.  相似文献   

13.
Temperature dependent electron beam induced current (EBIC) technique has been applied to investigate the electrical activities of grain boundaries (GBs) in polycrystalline silicon. The GB character, misorientation and orientation of GB plane, were analyzed using a FE-SEM/EBSP/OIM system prior to the EBIC measurements. The EBIC contrasts were found to depend on GB character; low GBs showed weak contrasts compared with general GBs at any temperatures, and also demonstrated to vary at GB irregularities such as boundary steps. These results indicate that electrical properties depend on the orientation of the GB plane as well as the misorientation. On the other hand, there existed less differences in temperature dependence of EBIC contrast irrespective of GB characters. The EBIC contrast decreased with increasing temperature, showed a minimum around 250 K, then increased again with further increasing temperature. The resulting temperature dependence of EBIC contrast probably comes from the combination of two types of recombination processes of carriers. One is related to a shallow level associated with an inherent GB structure, though the exact energy levels also would probably depend on GB structures, and the other to a deep level associated with impurities segregated at GBs, which acts as recombination center.  相似文献   

14.
Grain boundaries (GBs) relaxation is a promising and effective strategy to improving GB stability or stabilizing nanocrystalline metals. However, previous studies mainly focused on nanocrystalline pure metals and GB behaviors therein, without considering the role of foreign atoms such as impurity or alloying atoms in GB relaxation. In this work, the shear-strain induced structural relaxation of pure Cu Σ3 [110](112) symmetric tilt GBs (STGBs), and the effects of foreign elements (Fe and Ni) and temperature on the GB relaxation were investigated in detail by molecular dynamics method. The results show that shear strain can trigger the structural relaxation of pure, Fe- and Ni-containing Cu GBs by the emission of Shockley partial dislocations from Cu GBs. Both Fe and Ni have impediment effects on the shear-strain induced GB relaxation, though the content of Fe or Ni atom (0.00165 at.%) is quite low in the GB model. The temperature cannot trigger GB relaxation independently within the considered temperature range, but play a positive role in the shear-strain induced structural relaxations of pure, Fe- and Ni-containing Cu Σ3 [110](112) STGBs. Our work might gain new insights into the mechanically induced GB relaxation in nanocrystalline copper and could be beneficial for improving the stability of Cu GBs.  相似文献   

15.
The magnetic-field-induced 3D ordered phase of the two-leg spin ladder Cu2(C5H12N2)2Cl4 has been probed through measurements of 1H NMR spectra and 1/T1 in the temperature range 70 mK-1.2 K. The second order transition line T(c)(H) has been determined between H(c1) = 7.52 T and H(c2) = 13.5 T and varies as (H-H(c1))(2/3) close to H(c1). From the observation of anomalous shifts and a crossover in 1/T1 above T(c), the mechanism of the 3D transition is argued to be magnetoelastic as in spin-Peierls chains, here involving a displacement of the protons along the longitudinal exchange ( J( parallel)) path.  相似文献   

16.
Pulsed-beam Fourier transform microwave spectroscopy was used to observe and assign the rotational spectra of the argon-ketene van der Waals complex. Tunneling of the hydrogen or deuterium atoms splits the a- and b-type rotational transitions of H(2)CCO-Ar, H(2)(13)CCO-Ar, H(2)C(13)CO-Ar, and D(2)CCO-Ar into two states. This internal motion appears to be quenched for HDCCO-Ar where only one state is observed. The spectra of all isotopomers were satisfactorily fit to a Watson asymmetric top Hamiltonian which gave A=10 447.9248(10) MHz, B=1918.0138(16) MHz, C=1606.7642(15) MHz, Delta(J)=16.0856(70) kHz, Delta(JK)=274.779(64) kHz, Delta(K)=-152.24(23) kHz, delta(J)=2.5313(18) kHz, delta(K)=209.85(82) kHz, and h(K)=1.562(64) kHz for the A(1) state of H(2)CCO-Ar. Electric dipole moment measurements determined &mgr;(a)=0.417(10)x10(-30) C m [0.125(3) D] and &mgr;(b)=4.566(7)x10(-30) C m [1.369(2) D] along the a and b principal axes of the A(1) state of the normal isotopomer. A least squares fit of principal moments of inertia, I(a) and I(c), of H(2)CCO-Ar, H(2)(13)CCO-Ar, and H(2)C(13)CO-Ar for the A(1) states give the argon-ketene center of mass separation, R(cm)=3.5868(3) ?, and the angle between the line connecting argon with the center of mass of ketene and the C=C=O axis, θ(cm)=96.4 degrees (2). The spectral data are consistent with a planar geometry with the argon atom tilted toward the carbonyl carbon of ketene by 6.4 degrees from a T-shaped configuration. Copyright 2001 Academic Press.  相似文献   

17.
何欣  白清顺  白锦轩 《物理学报》2016,65(11):116101-116101
采用分子动力学模拟方法研究了不同晶界对石墨烯拉伸力学特性及断裂行为的影响. 定义了表征晶界能量特性的新参量缺陷能, 并以此为基础分析了晶界结构的能量特性. 探讨了晶界对弹性模量和强度极限等的影响以及强度对晶界能量特性的依赖关系. 结果表明: 晶界能量特性可以间接反映晶界强度; 同时, 晶界中缺陷会使实际承载碳键数量小于名义承载碳键数, 从而在较大范围内影响弹性模量. 分析了不同晶界的断裂过程, 发现了裂纹扩展方向的强度依赖性: 低强度晶界主要是以碳键直接断裂为主要方式的沿晶断裂, 而高强度晶界通常是碳键直接断裂和Stone-Wales翻转过程交替进行下的穿晶断裂. 研究结果可为石墨烯器件的设计制造提供理论指导.  相似文献   

18.
Two-dimensional (2D) F1-(1)H-coupled HSQC experiments provide 3:1:1:3 and 1:0:1 multiplets for AX(3) and AX(2) spin systems, respectively. These multiplets occur because, in addition to the 2S(y)H(z)(a)-->2S(y)H(z)(a) process, the coherence transfers such as 2S(y)H(z)(a)-->2S(y)H(z)(b) occurring in t(1) period provide detectable magnetization during the t(2) period. Here, we present a 2D F1-(1)H-coupled (1)H-(15)N heteronuclear correlation experiment that provides a 1:3:3:1 quartet for AX(3) spin system and a 1:2:1 triplet for AX(2). The experiment is a derivative of 2D HISQC experiment [J. Iwahara, Y.S. Jung, G.M. Clore, Heteronuclear NMR spectroscopy for lysine NH(3) groups in proteins: unique effect of water exchange on (15)N transverse relaxation. J. Am. Chem. Soc. 129 (2007) 2971-2980] and contains a scheme that kills anti-phase single-quantum terms generated in the t(1) period. The purge scheme is essential to observe in-phase single-quantum multiplets. Applications to the NH(2) and NH(3)(+) groups in proteins are demonstrated.  相似文献   

19.
The energy of grain boundary shears is calculated for symmetric grain boundaries (GBs) using ab initio methods and molecular-dynamic modeling in order to elucidate mechanisms that control GB shear-migration coupling in typical symmetric GBs, such as Σ3 (111), Σ5 (012), Σ5 (013) and Σ11 (113) tilt GBs, in Al bicrystal. The energy of generalized grain-boundary stacking faults (GB–SF) is determined, and the preferred directions and the energy barrier are established for grain-boundary slippage. It is shown that the relative slippage of neighboring grains at certain directions of particle shears is accompanied by conservative migration of GB in the direction perpendicular to its plain. The modeling data are comparative to known grain-boundary shear-migration coupling mechanisms in Al.  相似文献   

20.
We report on the c-axis resistivity rho(c)(H) in Bi(2)Sr(2)CaCu(2)O(8+delta) that peaks in quasistatic magnetic fields up to 60 T. By suppressing the Josephson part of the two-channel (Cooper pair/quasiparticle) conductivity sigma(c)(H), we find that the negative slope of rho(c)(H) above the peak is due to quasiparticle tunneling conductivity sigma(q)(H) across the CuO2 layers below H(c2). At high fields (a) sigma(q)(H) grows linearly with H, and (b) rho(c)(T) tends to saturate ( sigma(c) not equal0) as T-->0, consistent with the scattering at the nodes of the d-wave gap. A superlinear sigma(q)(H) marks the normal state above T(c).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号