首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
In data envelopment analysis (DEA) efficient decision making units (DMUs) are of primary importance as they define the efficient frontier. The current paper develops a new sensitivity analysis approach for the basic DEA models, such as, those proposed by Charnes, Cooper and Rhodes (CCR), Banker, Charnes and Cooper (BCC) and additive models, when variations in the data are simultaneously considered for all DMUs. By means of modified DEA models, in which the specific DMU under examination is excluded from the reference set, we are able to determine what perturbations of the data can be tolerated before efficient DMUs become inefficient. Our approach generalises the usual sensitivity analysis approach developed in which perturbations of the data are only applied to the test DMU while all the remaining DMUs remain fixed. In our framework data are allowed to vary simultaneously for all DMUs across different subsets of inputs and outputs. We study the relations of the infeasibility of modified DEA models employed and the robustness of DEA models. It is revealed that the infeasibility means stability. The empirical applications demonstrate that DEA efficiency classifications are robust with respect to possible data errors, particularly in the convex DEA case.  相似文献   

2.
《Optimization》2012,61(11):2441-2454
Inverse data envelopment analysis (InDEA) is a well-known approach for short-term forecasting of a given decision-making unit (DMU). The conventional InDEA models use the production possibility set (PPS) that is composed of an evaluated DMU with current inputs and outputs. In this paper, we replace the fluctuated DMU with a modified DMU involving renewal inputs and outputs in the PPS since the DMU with current data cannot be allowed to establish the new PPS. Besides, the classical DEA models such as InDEA are assumed to consider perfect knowledge of the input and output values but in numerous situations, this assumption may not be realistic. The observed values of the data in these situations can sometimes be defined as interval numbers instead of crisp numbers. Here, we extend the InDEA model to interval data for evaluating the relative efficiency of DMUs. The proposed models determine the lower and upper bounds of the inputs of a given DMU separately when its interval outputs are changed in the performance analysis process. We aim to remain the current interval efficiency of a considered DMU and the interval efficiencies of the remaining DMUs fixed or even improve compared with the current interval efficiencies.  相似文献   

3.
Data envelopment analysis (DEA) allows us to evaluate the relative efficiency of each of a set of decision-making units (DMUs). However, the methodology does not permit us to identify specific sources of inefficiency because DEA views the DMU as a “black box” that consumes a mix of inputs and produces a mix of outputs. Thus, DEA does not provide a DMU manager with insight regarding the internal source of the organization’s inefficiency.  相似文献   

4.
Robustness of the efficient DMUs in data envelopment analysis   总被引:2,自引:0,他引:2  
By means of modified versions of CCR model based on evaluation of a decision making unit (DMU) relative to a reference set grouped by all other DMUs, sensitivity analysis of the CCR model in data envelopment analysis (DEA) is studied in this paper. The methods for sensitivity analysis are linear programming problems whose optimal values yield particular regions of stability. Sufficient and necessary conditions for upward variations of inputs and for downward variations of outputs of an (extremely) efficient DMU which remains efficient are provided. The approach does not require calculation of the basic solutions and of the inverse of the corresponding optimal basis matrix. The approach is illustrated by two numerical examples.  相似文献   

5.
It is important to consider the decision making unit (DMU)'s or decision maker's preference over the potential adjustments of various inputs and outputs when data envelopment analysis (DEA) is employed. On the basis of the so-called Russell measure, this paper develops some weighted non-radial CCR models by specifying a proper set of ‘preference weights’ that reflect the relative degree of desirability of the potential adjustments of current input or output levels. These input or output adjustments can be either less or greater than one; that is, the approach enables certain inputs actually to be increased, or certain outputs actually to be decreased. It is shown that the preference structure prescribes fixed weights (virtual multiplier bounds) or regions that invalidate some virtual multipliers and hence it generates preferred (efficient) input and output targets for each DMU. In addition to providing the preferred target, the approach gives a scalar efficiency score for each DMU to secure comparability. It is also shown how specific cases of our approach handle non-controllable factors in DEA and measure allocative and technical efficiency. Finally, the methodology is applied with the industrial performance of 14 open coastal cities and four special economic zones in 1991 in China. As applied here, the DEA/preference structure model refines the original DEA model's result and eliminates apparently efficient DMUs.  相似文献   

6.
The extensions to the variable (VRS) and the constant (CRS) returns-to-scale models developed by Banker and Morey are considered among the main approaches to the incorporation of exogenously fixed factors in models of data envelopment analysis (DEA). Recently, Syrjänen showed that the Banker and Morey CRS technology is not convex. Taking into account that its subset VRS technology is explicitly assumed convex, this observation leads to difficulties with explaining the fundamental production assumptions of the CRS extension. Motivated by the example of Syrjänen, the contribution of this paper is twofold. First, we show that the nonconvex Banker and Morey CRS technology is nevertheless a suitable reference technology for the assessment of scale efficiency. Second, we ask if a convex technology could be constructed that would “correct” the nonconvexity of the CRS technology of Banker and Morey. The answer to this is negative: one consequence of assuming both convexity and ray unboundness with fixed exogenous factors is that we can always “mix-and-match” discretionary and nondiscretionary factors taken from different units, arriving at totally unrealistic production plans. This demonstrates that generally there exists no meaningful convex CRS technology with exogenously fixed factors that can be used in its own right, apart from its use as a reference technology in the measurement of scale efficiency.  相似文献   

7.
逆DEA模型讨论了在保持决策单元的效率指数(即最优值)不变的情况下,当输入水平给定时估计输出值.在逆DEA模型的基础上研究了效率指数提高的输出估计,讨论了带有随机因素的情况,将该问题转化成机会约束的线性规划问题,并用数值算例加以说明.  相似文献   

8.
A modified super-efficiency DEA model for infeasibility   总被引:1,自引:0,他引:1  
The super-efficiency data envelopment analysis (DEA) model is obtained when a decision making unit (DMU) under evaluation is excluded from the reference set. This model provides for a measure of stability of the “efficient” status for frontier DMUs. Under the assumption of variable returns to scale (VRS), the super efficiency model can be infeasible for some efficient DMUs, specifically those at the extremities of the frontier. The current study develops an approach to overcome infeasibility issues. It is shown that when the model is feasible, our approach yields super-efficiency scores that are equivalent to those arising from the original model. For efficient DMUs that are infeasible under the super-efficiency model, our approach yields optimal solutions and scores that characterize the extent of super-efficiency in both inputs and outputs. The newly developed approach is illustrated with two real world data sets.  相似文献   

9.
In data envelopment analysis (DEA), identification of the strong defining hyperplanes of the empirical production possibility set (PPS) is important, because they can be used for determining rates of change of outputs with change in inputs. Also, efficient hyperplanes determine the nature of returns to scale. The present work proposes a method for generating all linearly independent strong defining hyperplanes (LISDHs) of the PPS passing through a specific decision making unit (DMU). To this end, corresponding to each efficient unit, a perturbed inefficient unit will be defined and, using at most m+s linear programs, all LISDHs passing through the DMU will be determined, where m and s are the numbers of inputs and outputs, respectively.  相似文献   

10.
In this paper, sensitivity analysis of the Charnes–Cooper–Rhodes model in data envelopment analysis (DEA) is studied for the case of perturbation of all outputs and of all inputs of an efficient decision-making unit (DMU). Using an approximate inverse of the perturbed optimal basis matrix, an approximate preservation of efficiency for an efficient DMU under these perturbations is considered. Sufficient conditions for an efficient DMU to preserve its efficiency are obtained in that case. An illustrative example is provided.  相似文献   

11.
We introduce stochastic version of an input relaxation model in data envelopment analysis (DEA). The input relaxation model, recently developed in DEA, is useful to resource management [e.g. G.R. Jahanshahloo, M. Khodabakhshi, Suitable combination of inputs for improving outputs in DEA with determining input congestion, Appl. Math. Comput. 151(1) (2004) 263–273]. This model allows more changes in the input combinations of decision making units than those in the observed inputs of evaluating decision making units. Using this extra flexibility in input combinations we can find better outputs. We obtain a non-linear deterministic equivalent to this stochastic model. It is shown that under fairly general conditions this non-linear model can be replaced by an ordinary deterministic DEA model. The model is illustrated using a real data set.  相似文献   

12.
Data envelopment analysis (DEA) is commonly employed to evaluate the efficiency performance of a decision making unit (DMU) that transforms exogenous inputs into final outputs. In such a black-box DEA approach, details of an internal production process of the DMU are typically ignored and hence the locations of inefficiency are not adequately provided. In view of this, DEA researchers have recently developed various network approaches by looking into the black box, where the inputs that enter the box and the outputs that come out of it are only considered. However, most of these network approaches evaluate divisional efficiency by using an optimal solution of their respective optimization problem. If such an optimal solution is used in the case when there are multiple optima, then managerial guidance based on this solution alone may be inappropriate because more appropriate targets from the viewpoint of management may be ignored. Taking this fact into account, therefore, we propose a network approach for identifying the efficiency status of each DMU and its divisions. This approach provides a practical computational procedure.  相似文献   

13.
Super-efficiency data envelopment analysis (DEA) model is obtained when a decision making unit (DMU) under evaluation is excluded from the reference set. Because of the possible infeasibility of super-efficiency DEA model, the use of super-efficiency DEA model has been restricted to the situations where constant returns to scale (CRS) are assumed. It is shown that one of the input-oriented and output-oriented super-efficiency DEA models must be feasible for a any efficient DMU under evaluation if the variable returns to scale (VRS) frontier consists of increasing, constant, and decreasing returns to scale DMUs. We use both input- and output-oriented super-efficiency models to fully characterize the super-efficiency. When super-efficiency is used as an efficiency stability measure, infeasibility means the highest super-efficiency (stability). If super-efficiency is interpreted as input saving or output surplus achieved by a specific efficient DMU, infeasibility does not necessary mean the highest super-efficiency.  相似文献   

14.
In this paper stochastic models in data envelopment analysis (DEA) are developed by taking into account the possibility of random variations in input-output data, and dominance structures on the DEA envelopment side are used to incorporate the modelbuilder's preferences and to discriminate efficiencies among decision making units (DMUs). The efficiency measure for a DMU is defined via joint dominantly probabilistic comparisons of inputs and outputs with other DMUs and can be characterized by solving a chance constrained programming problem. Deterministic equivalents are obtained for multivariate symmetric random errors and for a single random factor in the production relationships. The goal programming technique is utilized in deriving linear deterministic equivalents and their dual forms. The relationship between the general stochastic DEA models and the conventional DEA models is also discussed.  相似文献   

15.
This paper provides a one-model approach of input congestion based on input relaxation model developed in data envelopment analysis (e.g. [G.R. Jahanshahloo, M. Khodabakhshi, Suitable combination of inputs for improving outputs in DEA with determining input congestion — Considering textile industry of China, Applied Mathematics and Computation (1) (2004) 263–273; G.R. Jahanshahloo, M. Khodabakhshi, Determining assurance interval for non-Archimedean ele improving outputs model in DEA, Applied Mathematics and Computation 151 (2) (2004) 501–506; M. Khodabakhshi, A super-efficiency model based on improved outputs in data envelopment analysis, Applied Mathematics and Computation 184 (2) (2007) 695–703; M. Khodabakhshi, M. Asgharian, An input relaxation measure of efficiency in stochastic data analysis, Applied Mathematical Modelling 33 (2009) 2010–2023]. This approach reduces solving three problems with the two-model approach introduced in the first of the above-mentioned reference to two problems which is certainly important from computational point of view. The model is applied to a set of data extracted from ISI database to estimate input congestion of 12 Canadian business schools.  相似文献   

16.
Cross-efficiency evaluation is a commonly used approach for ranking decision-making units (DMUs) in data envelopment analysis (DEA). The weights used in the cross-efficiency evaluation may sometimes differ significantly among the inputs and outputs. This paper proposes some alternative DEA models to minimize the virtual disparity in the cross-efficiency evaluation. The proposed DEA models determine the input and output weights of each DMU in a neutral way without being aggressive or benevolent to the other DMUs. Numerical examples are tested to show the validity and effectiveness of the proposed DEA models and illustrate their significant role in reducing the number of zero weights.  相似文献   

17.
Data envelopment analysis (DEA), which is used to determine the efficiency of a decision-making unit (DMU), is able to recognize the amount of input congestion. Moreover, the relative importance of inputs and outputs can be incorporated into DEA models by weight restrictions. These restrictions or a priori weights are introduced by the decision maker and lead to changes in models and efficiency interpretation. In this paper, we present an approach to determine the value of congestion in inputs under the weight restrictions. Some discussions show how weight restrictions can affect the congestion amount.  相似文献   

18.
Conventional data envelopment analysis (DEA) models assume real-valued inputs and outputs. In many occasions, some inputs and/or outputs can only take integer values. In some cases, rounding the DEA solution to the nearest whole number can lead to misleading efficiency assessments and performance targets. This paper develops the axiomatic foundation for DEA in the case of integer-valued data, introducing new axioms of “natural disposability” and “natural divisibility”. We derive a DEA production possibility set that satisfies the minimum extrapolation principle under our refined set of axioms. We also present a mixed integer linear programming formula for computing efficiency scores. An empirical application to Iranian university departments illustrates the approach.  相似文献   

19.
The concept of efficiency in data envelopment analysis (DEA) is defined as weighted sum of outputs/weighted sum of inputs. In order to calculate the maximum efficiency score, each decision making unit (DMU)’s inputs and outputs are assigned to different weights. Hence, the classical DEA allows the weight flexibility. Therefore, even if they are important, the inputs or outputs of some DMUs can be assigned zero (0) weights. Thus, these inputs or outputs are neglected in the evaluation. Also, some DMUs may be defined as efficient even if they are inefficient. This situation leads to unrealistic results. Also to eliminate the problem of weight flexibility, weight restrictions are made in DEA. In our study, we proposed a new model which has not been published in the literature. We describe it as the restricted data envelopment analysis ((ARIII(COR))) model with correlation coefficients. The aim for developing this new model, is to take into account the relations between variables using correlation coefficients. Also, these relations were added as constraints to the CCR and BCC models. For this purpose, the correlation coefficients were used in the restrictions of input–output each one alone and their combination together. Inputs and outputs are related to the degree of correlation between each other in the production. Previous studies did not take into account the relationship between inputs/outputs variables. So, only with expert opinions or an objective method, weight restrictions have been made. In our study, the weights for input and output variables were determined, according to the correlations between input and output variables. The proposed new method is different from other methods in the literature, because the efficiency scores were calculated at the level of correlations between the input and/or output variables.  相似文献   

20.
One of the most important information given by data envelopment analysis models is the cost, revenue and profit efficiency of decision making units (DMUs). Cost efficiency is defined as the ratio of minimum costs to current costs, while revenue efficiency is defined as the ratio of maximum revenue to current revenue of the DMU. This paper presents a framework where data envelopment analysis (DEA) is used to measure cost, revenue and profit efficiency with fuzzy data. In such cases, the classical models cannot be used, because input and output data appear in the form of ranges. When the data are fuzzy, the cost, revenue and profit efficiency measures calculated from the data should be uncertain as well. Fuzzy DEA models emerge as another class of DEA models to account for imprecise inputs and outputs for DMUs. Although several approaches for solving fuzzy DEA models have been developed, numerous deficiencies including the α-cut approaches and types of fuzzy numbers must still be improved. This scheme embraces evaluation method based on vector for proposed fuzzy model. This paper proposes generalized cost, revenue and profit efficiency models in fuzzy data envelopment analysis. The practical application of these models is illustrated by a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号