首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.

We report the preparation of highly compressible and elastic piezoelectric aerogels of carboxylated cellulose nanocrystals (CNCs). Aqueous CNC dispersions containing polyethyleneimine and crosslinker were frozen isotropically to yield isotropic aerogels, while oriented aerogels were prepared by directional freezing. These aerogels were highly flexible and porous (~?85% void fraction), exhibiting greater than 90% recovery at 50% compressive strain even after 100 compression–decompression cycles. Since such aerogels with low bulk modulus and high anisotropy would be an ideal platform for leveraging the piezoelectric properties of CNCs, we used them to prepare piezoelectric nanogenerator devices and determined their energy transduction behavior. Anisotropic aerogels led to an enhanced open-circuit voltage of 840 mV (at ~?8 N applied force), which is over 2.6 times higher than isotropic aerogels (320 mV). The energy density of anisotropic aerogels was around 52 nW/cm2, representing outstanding piezoelectric performance for cellulose-based aerogels. Such aerogels with high compressibility, elastic recovery and exceptional piezoelectric performance could have potential applications in sensors, wearable electronics, etc.

  相似文献   

2.
Long terminal unpaired nucleotides known as dangling ends play interesting roles in biological systems. Previous studies, however, only dealt with the energy contributions of single dangling bases. The energy contributions of long dangling ends on the stability of duplexes have not been systematically studied. We now report a quantitative increase in stability of RNA-RNA and DNA-DNA duplexes containing a long dangling end. We found a larger enhancement of the stability by the long RNA dangling end of the RNA-RNA duplex than has been observed for the DNA duplexes. It is also found that structural stabilizations by long dangling ends seem to originate from the single-stranded stacking interactions of nucleotides. These results indicate that RNA stability can be achieved by increasing the length of the dangling end. The thermodynamic parameters of the long dangling ends are useful for designing ribozymes and antisense oligonucleotides, and for the prediction of the RNA secondary structure like the pseudoknot.  相似文献   

3.
Bridged polysilsesquioxanes are increasingly used to prepare protective coatings, particulate chromatographic materials, and adsorbents. However, little is known about the mechanical properties of the materials and how they are influenced by the nature of the bridging group. In this paper, we have prepared monolithic xerogels and aerogels of hexylene- and phenylene-bridged polysilsesquioxanes and have measured their flexural strength and modulus. Consistent with their compact structure, the porous, glassy phenylene- and hexylene-bridged xerogels were hundreds of stronger than the analogous aerogels. The nature of the bridging group did not appear to affect the mechanical properties of the xerogels, in contrast, it presented a profound effect on the mechanical properties of the aerogels. Phenylene-bridged aerogels were brittle and 30% stronger than silica aerogels of the same density. However, the opaque hexylene-bridged aerogels were found to be elastic and appreciably weaker than the phenylene-bridged or silica aerogels.  相似文献   

4.
When gently stressed, aerogels show an elastic response. However it was found that under isostatic pressure aerogels display an irreversible shrinkage which may be attributed to plastic behaviour. As a consequence of this plastic shrinkage it is possible to densify and modify the elastic properties of aerogels at room temperature.The structural evolution is followed by Small Angle X ray Scattering and the increase of the connectivity is revealed by the evolution of the elastic properties of the material.The SAXS data show that the densification mechanism is different from that obtained by sintering at high temperature. The densification mechanism induces a textural change at the periphery of the constitutive clusters but not inside, conversely to a sintering effect. We also show that the elasticity of the material is strongly influenced by this structural transformation. The power law evolution of the elastic modulus as a function of the density, usually observed on as-prepared and sintered aerogels, is not valid for compressed material.  相似文献   

5.
While the introduction of polymers into aerogels strongly enhances their toughness, truly elastic monolithic aerogels which restore their dimensions upon extensive compression are still challenging to synthesize. In this context hydrophobic semi‐crystalline polymers with low glass transition temperatures, and combined stiffness and flexibility, have only recently attracted attention. Shown here is that polyethylene aerogels with a low density, and combined chemical crosslinking and high crystallinity, display high moduli and excellent mechanical resilience. To maximize the crystallinity of these aerogels while maintaining a high crosslinking density, polyethylene networks with well‐defined segments were synthesized by hydrosilylation crosslinking of telechelic, vinyl‐functionalized oligomers obtained from catalyzed chain‐growth polymerization. Recoverable deformations both above and below the melting temperature of polyethylene affords remarkable shape‐memory properties.  相似文献   

6.
The experimental results of the studies on the absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels, are reported. The elastic superhydrophobic aerogels were prepared using methyltrimethoxysilane (MTMS) precursor by a two-step sol-gel process followed by supercritical drying. Monolithic superhydrophobic silica aerogels were used as the absorbents. In all, four alkanes, three aromatic compounds, four alcohols and three oils were used. The absorption property of the aerogel was quantified by the mass and moles of the organic liquid absorbed by unit mass of the aerogel. The superhydrophobic aerogels showed a very high uptake capacity and high rate of uptake. The desorption of solvents and oils was studied by maintaining the as-absorbed aerogel samples at various temperatures and weighing them at regular time intervals until all the absorbed liquid got totally desorbed. This was verified by measuring the weights of the aerogel samples before and after desorption. The transmission electron micrograph observations showed that the aerogel structure was not much affected by the solvent absorption, while the oil absorption led to the shrinkage resulting in a dense structure after the desorption. In all the cases, the aerogels retained hydrophobicity and could be re-used as absorbents.  相似文献   

7.
Different carbon aerogels were obtained by carbonization of organic aerogels prepared from the polymerization of resorcinol and formaldehyde using potassium carbonate as catalyst. Various solvents were added to the initial mixture to study their effects on the inter- and intra-primary-particle structure of the carbon aerogels. To carry out this study, various techniques were used, including high-resolution transmission and scanning electron microscopy, mercury porosimetry, mechanical tests, N2 and CO2 adsorption at -196 and 0 degrees C, respectively, and immersion calorimetry into benzene. Variation of the solvent used produced changes in the gelation time of the organic aerogels, which gave rise to variations in the inter- and intra-primary-particle structure of the carbon aerogels obtained. The monolith density of the carbon aerogels ranged from 0.37 to 0.87 g/cm3. Samples with a density higher than 0.61 g/cm3 had micropores and mesopores but no macropores. Macro- and mesoporosity had a monomodal pore size distribution. The elastic modulus showed a scaling relationship with density. In all samples studied, which had a mean micropore width of 0.62-1.06 nm, the surface area obtained by enthalpy of immersion into benzene yielded a realistic value of their total surface area.  相似文献   

8.
Production of density gradient aerogels with predetermined density steps or gradient is challenging, particularly when the experiments would demand a prescribed gradient in density along the axis of cylindrical shaped aerogel. In order to achieve this, it is vital to characterize and accurately measure the density gradient in order to “design” synthetic routes to achieve the desired density gradient that can be used in plasma physics experiments using high-energy lasers. X-ray tomography was used for the characterization of these aerogels and it is demonstrated that it is the most reliable and quick method for characterization of gradient density aerogels. Divinyl benzene aerogels samples were synthesized by Lewis acid catalysis and samples were supercritically dried, characterized and their parameters measured to realize that the necessary properties were achieved. The change in density from solid density to 100 mg/cm3 is registered and the accuracy is evaluated.  相似文献   

9.
Resilient and compressible three-dimensional nanomaterials comprising polymers, carbon, and metals have been prepared in diverse forms. However, the creation of thermostable elastic ceramic aerogels remains an enormous challenge. We demonstrate an in situ synthesis strategy to develop biomimetic silica nanofibrous (SNF) aerogels with superelasticity by integrating flexible electrospun silica nanofibers and rubber-like Si−O−Si bonding networks. The stable bonding structure among nanofibers is in situ constructed along with a fibrous freeze-shaping process. The resultant SNF aerogels exhibit integrated properties of ultralow density (>0.25 mg cm−3), temperature-invariant superelasticity up to 1100 °C, and robust fatigue resistance over one million compressions. The ceramic nature also endows the aerogels with fire resistance and ultralow thermal conductivity. The successful synthesis of the SNF aerogels opens new pathways for the design of superelastic ceramic aerogels in a structurally adaptive and scalable form.  相似文献   

10.
Resilient and compressible three‐dimensional nanomaterials comprising polymers, carbon, and metals have been prepared in diverse forms. However, the creation of thermostable elastic ceramic aerogels remains an enormous challenge. We demonstrate an in situ synthesis strategy to develop biomimetic silica nanofibrous (SNF) aerogels with superelasticity by integrating flexible electrospun silica nanofibers and rubber‐like Si?O?Si bonding networks. The stable bonding structure among nanofibers is in situ constructed along with a fibrous freeze‐shaping process. The resultant SNF aerogels exhibit integrated properties of ultralow density (>0.25 mg cm?3), temperature‐invariant superelasticity up to 1100 °C, and robust fatigue resistance over one million compressions. The ceramic nature also endows the aerogels with fire resistance and ultralow thermal conductivity. The successful synthesis of the SNF aerogels opens new pathways for the design of superelastic ceramic aerogels in a structurally adaptive and scalable form.  相似文献   

11.
In the present paper the experimental results of the effect of sol-gel processing temperature on the physical properties of the TEOS based silica aerogels are reported and discussed. The aerogels were produced by the two step sol-gel process at various temperatures in the range of 26–70∘;C followed by supercritical drying using methanol solvent extraction. A remarkable reduction in the gelation time was observed from three and a half days at room temperature to a mere 18 hours at 50∘;C. The best quality aerogels in terms of low density and high optical transmission were obtained for 6 hours hydrolysis time. The aerogels were characterized by the measurements of bulk density, volume shrinkage, porosity, refractive index and optical transmission. Monolithic aerogels with ultra low density (∼0.018 g/cm3), extremely high porosity (∼99%) and optimum optical transmission at 700 nm (∼75%) were obtained for the molar ratio of TEOS:MeOH:acidic water:basic water at 1:99:10.42:14.58 respectively.  相似文献   

12.
A novel type of sponge-like material for the separation of mixed oil and water liquids has been prepared by the vapour deposition of hydrophobic silanes on ultra-porous nanocellulose aerogels. To achieve this, a highly porous (>99%) nanocellulose aerogel with high structural flexibility and robustness is first formed by freeze-drying an aqueous dispersion of the nanocellulose. The density, pore size distribution and wetting properties of the aerogel can be tuned by selecting the concentration of the nanocellulose dispersion before freeze-drying. The hydrophobic light- weight aerogels are almost instantly filled with the oil phase when selectively absorbing oil from water, with a capacity to absorb up to 45 times their own weight in oil. The oil can also be drained from the aerogel and the aerogel can then be reused for a second absorption cycle.  相似文献   

13.
Scaling Properties and Structure of Aerogels   总被引:1,自引:0,他引:1  
Young’s modulus as well as solid thermal and electrical conductivity of aerogels have been observed to scale with density. No quantitative explanations were available up to now for these experimental findings. To establish a quantitive relationship between morphological and topological features of fractal gel networks, a simulation procedure is introduced that allows to produce three-dimensional gel structures, from which two important parameters can be extracted: i) the fraction α of interconnected mass of the gel network and ii) the ratio γ of Pythagorean distance to minimum path length on the gel backbone. Surprisingly the product αγ, which enters important macroscopic parameters such as elasticity or solid thermal (and electrical) conductivity, was found to scale with an exponent that is only a function of the mass fractal dimensionD. Also, an analytical relation between modulus and conductivity can be derived.  相似文献   

14.
《中国化学快报》2022,33(10):4683-4686
Aerogels have become a hot topic of research due to their extremely low density and special interconnected structure as well as their enzyme-like activity. The development of new multifunctional nano-enzyme aerogels with high activity and good stability is still a considerable challenge. In this paper, AuRu aerogels with peroxidase and oxidase activities were synthesized using a simple one-step method and successfully used to construct colorimetric sensors for the detection of Fe2+ and glucose based on their enzyme-like activities. Furthermore, we are fortunate to find that AuRu aerogels have good photothermal properties. This suggests that AuRu aerogels can be used not only for in vitro testing but also for promising applications such as disease treatment.  相似文献   

15.
SiO2气凝胶的非超临界干燥法制备及其形成过程   总被引:23,自引:0,他引:23  
通过对正硅酸乙酯的两步水解-缩聚反应速率的调控,使生成的醇凝胶具有比较完整的网络结构,配合乙醇溶剂替换和正硅酸乙酯乙醇溶液浸泡和陈化,改善和增强凝胶的结构和强度,在分级干燥下实现了SiO2气凝胶的非超临界干燥制备,并采用SEM、TEM、TG-DTA、XRD和吸附-脱附技术等手段对所得气凝胶样品进行表征.结果表明, 该气凝胶是由粒径约10 nm均匀球状纳米粒子构成的具有连续网络结构的低密度多孔材料,密度为200~400 kg•m-3,孔径分布在10~30 nm范围内,孔隙率约为91%,比表面高达625.65 m2•g-1.外观及微观构造与应用超临界干燥制得的气凝胶完全一致.调节反应体系中各组分的配比以及控制两步水解-缩聚过程中酸与碱的加入量可以获得不同密度的块状SiO2气凝胶.  相似文献   

16.
利用溶胶-凝胶反应制备了聚酰亚胺凝胶, 经过超临界干燥得到了聚酰亚胺气凝胶. 研究了固含量和交联剂比例对气凝胶性能的影响规律. 结果表明, 聚酰亚胺气凝胶的密度和线收缩率都随着固含量和交联剂比例的增加而增加; 随着固含量的增加, 气凝胶的室温热导率呈现出先降低再增加的趋势(0.026~0.033 W·m-1·K-1), 气凝胶的力学刚度和强度明显提升; 交联剂的加入, 可以提高材料的韧性, 断裂应变最高达21.7%; 制得的柔性聚酰亚胺气凝胶具有良好的热稳定性, 是满足尖端武器以及空间飞行器对于轻质、 柔性热防护要求的理想材料之一.  相似文献   

17.
Owing to their low density, dielectric constant, thermal conductivity, high porosity and chemical inertness, monolithic aerogels could be useful in a variety of electronic, optical and chemical applications [1]. However, practical implementation has been slow, because aerogels are fragile, environmentally sensitive (hydrophilic) and most importantly, the final stage of their preparation involves supercritical fluid (SCF) extraction [1c]. It is reported herewith that for a nominal 3-fold increase in density, typical polymer crosslinked silica aerogels are not only stronger (> 300×) and less hydrophilic (< 10×) than the underlying silica backbone, but they can also withstand the capillary forces exerted upon their nanostructured framework by the residing meniscus of selected solvents, and thus they can be dried under ambient pressure without need for supercritical fluid (SCF) extraction. The best solvent identified for that purpose is pentane, and the resulting aerogels are both microscopically and macroscopically identical to their SCF-CO2 dried counterparts. Being able to dry monolithic crosslinked aerogels without SCF extraction is expected to facilitate their commercial application.Employed by the Ohio Aerospace Institute.  相似文献   

18.
Hydrophobic silica aerogels have been prepared using the rapid supercritical extraction (RSCE) technique. The RSCE technique is a one-step methanol supercritical extraction method for producing aerogel monoliths in 3 to 8 h. Standard aerogels were prepared from a tetramethoxysilane (TMOS) recipe with a molar ratio of TMOS:MeOH:H2O:NH4OH of 1.0:12.0:4.0:7.4 × 10−3. Hydrophobic aerogels were prepared using the same recipe except the TMOS was replaced with a mixture of TMOS and one of the following organosilane co-precursors: methytrimethoxysilane (MTMS), ethyltrimethoxysilane (ETMS), or propyltrimeth-oxysilane (PTMS). Results show that, by increasing the amount of catalyst and increasing gelation time, monolithic aerogels can be prepared out of volume mixtures including up to 75% MTMS, 50% ETMS or 50% PTMS in 7.5–15 h. As the amount of co-precursor is increased the aerogels become more hydrophobic (sessile tests with water droplets yield contact angles up to 155°) and less transparent (transmission through a 12.2-mm thick sample decreases from 83 to 50% at 800 nm). The skeletal and bulk density decrease and the surface area increases (550–760 m2/g) when TMOS is substituted with increasing amounts of MTMS. The amount of co-precursor does not affect the thermal conductivity. SEM imaging shows significant differences in the nanostructure for the most hydrophobic surfaces.  相似文献   

19.
Physical adsorption is a common method to solve the contamination of methylene blue in dyeing wastewater. As a kind of adsorption material, cellulose aerogels with high porosity and surface areas have great potential application in methylene blue removal. However, the week hydrogen bonding between cellulose nanofibers making the cellulose aerogels with the poor mechanical properties and can be easily destroyed during adsorption. Hence, the preparation of cellulose aerogels with high mechanical strength is still a great challenge. Here, we report a robust super-assembly strategy to fabricate cellulose aerogels by combining cellulose nanofibers with PVA and M-K10. The resulting cellulose aerogels not only has a robust chemically cross-linked network, but also has strong H-bonds, which greatly enhance the mechanical properties. The resulting cellulose aerogels possess a low density of 19.32 mg/cm3.Furthermore, the cellulose aerogel shows 93% shape recovery under 60% strain(9.5 k Pa under 60% strain)after 100 cycles, showing excellent mechanical property. The adsorption capacity of cellulose aerogel to methylene blue solution of 20 mg/L is 2.28 mg/g and the adsorption kinetics and adsorption isotherms have also been studied. Pseudo-second-order kinetic model and Freundlich isotherm model are more acceptable for indicating the adsorption process of methylene blue on the cellulose aerogel. Thus, this compressible and durable cellulose aerogel is a very prospective material for dyeing wastewater cleanup.  相似文献   

20.
The experimental results on the preparation of low thermal conductivity and transparent ambient pressure dried silica aerogels with the sodium silicate solution, TMCS silylating agent with methanol, isopropyl alcohol, hexane and xylene solvents, are reported. This study is focussed on the effect of preparation conditions such as varying the number of preparation steps, pH of the hydrosol and hydrogel ageing temperature, for the production of the low thermal conductive silica aerogels and the results are analysed. Density, thermal conductivity, % of optical transmission and contact angle of the aerogels were measured. The Fourier Transform Infrared Spectroscopy (FTIR) studies revealed the presence of Si–C and C–H along with the Si–O–Si and OH bonds and their intensities strongly depend on the processing steps, pH of the hydrosol and gel ageing temperature. The UV–Visible spectra indicated the % of optical transmission of the aerogels decreased with increasing the number of processing steps, increase in the pH of the hydrosol from 3 to 8 and decreased for ageing temperature up to 50 °C. Further increase in temperature >50 °C, the % of optical transmission of the aerogels increased. The TGA-DTA data showed the thermal stability of the aerogels with respect to hydrophobicity is 325 °C. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) analyses revealed the nanostructure of the aerogels. The porosity of the aerogels was studied using the pore size distribution. Silica aerogels with low density (0.051 g/cc), low thermal conductivity (0.049 W/m K), optical transmission (65%), high hydrophobicity (159°) and resistance to humid atmosphere >1 year was obtained in the present studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号